首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.  相似文献   

5.
6.
7.
8.
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.  相似文献   

9.
10.
11.
12.
Wang H  Deng XW 《The EMBO journal》2002,21(6):1339-1349
In Arabidopsis, phytochrome A (phyA) is the primary photoreceptor mediating various plant responses to far-red (FR) light. Here we show that phyA signaling involves a combinatorial action of downstream intermediates, which controls overlapping yet distinctive sets of FR responses. FHY3 is a prominent phyA signaling intermediate sharing structural similarity to FAR1, a previously identified phyA signaling component. The fhy3 and far1 mutants display similar yet distinctive defects in phyA signaling; however, overexpression of either FHY3 or FAR1 suppresses the mutant phenotype of both genes. Moreover, overexpression of partial fragments of FHY3 can cause a dominant-negative interference phenotype on phyA signaling that is stronger than those of the fhy3 or far1 null mutants. Further, we demonstrate that FHY3 and FAR1 are capable of homo- and hetero-interaction. Our data indicate that FHY3, together with FAR1, defines a key module in a signaling network underlying phyA-mediated FR light responses.  相似文献   

13.
14.
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.  相似文献   

15.
Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.  相似文献   

16.
Phytochrome A (phyA) is the primary photoreceptor responsible for various far-red (FR) light-mediated responses. Previous studies have identified multiple phyA signaling mutants, including both positive and negative regulators of the phyA-mediated responses. How these defined intermediates act to mediate FR light responses is largely unknown. Here a cDNA microarray was used to examine effects of those mutations on the far-red light control of genome expression. Clustering analysis of the genome expression profiles supports the notion that phyA signaling may entail a network with multiple paths, controlling overlapping yet distinct sets of gene expression. FHY1, FAR1 and FHY3 most likely act upstream in the phyA signaling network, close to the phyA photoreceptor itself. FIN219, SPA1 and REP1 most likely act somewhere more downstream in the network and control the expression of smaller sets of genes. Further, this study also provides genomics evidence for the partial functional redundancy between FAR1 and FHY3. These two homologous proteins control the expression of a largely overlapping set of genes, and likely act closely together in the phyA-mediated FR light responses.  相似文献   

17.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号