首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
2.
This study was performed to culture and preliminarily identify the primordial germ cells (PGCs) isolated from the genital ridge of the Mongolian sheep fetus. The growth characteristics of the sheep PGCs were detected in different culture systems such as culture media, resources, and state and passages of feeder cells. The obtained embryonic germ (EG) cells were identified by morphology, enzymology, and immunofluorescence. The results showed that the sheep EG cell colonies were ridgy, typically nest like, and compact, and had regular edges. Alkaline phosphatase staining reaction was weakly positive. EG cells expressed Kit, Rex-1, Nanog, and Oct-4. Immunofluorescence detection was weakly positive for Oct3/4, whereas positive for SSEA-1, SSEA-3, SSEA-4, TRA-1-61, and TRA-1-80.  相似文献   

3.
对关中奶山羊配种后6~7天的桑椹胚和囊胚,分别采用全胚培养法、酶消化法和免疫外科法进行处理.将处理后的胚胎培养于小鼠胎儿成纤维细胞(MEF)饲养层上,分离培养山羊胚胎干细胞(Embryonic stem cell,ESC).对分离传代的山羊ESCs分别进行免疫组化染色,RT-PCR检测和体外诱导分化试验.结果表明.全胚培养法易于胚胎贴壁形成原代集落,采用全胚培养法获得的ESCs有一株目前已传至18代.山羊ESCs Nanong、Oct4、SSEA-3免疫组化染色呈阳性,SSEA-1免疫组化染色呈弱阳性,SSEA-4免疫组化染色呈阴性,RT-PCR检测显示其表达Nanog、Oct4、端粒酶、CD117.山羊ESCs经DMSO体外诱导可以向心肌细胞分化.这些试验均表明该细胞具有ESCs的生物学特性.  相似文献   

4.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P?相似文献   

5.
We report herein the establishment of three bovine pluripotent embryonic cell lines derived from 8-16-cell precompacting embryos. Two cell lines were cultured for 10 passages and underwent spontaneous differentiation. One cell line (Z2) has been cultured continuously for over 3 years and has remained undifferentiated. These cells express cell surface markers that have been used routinely to characterize embryonic stem (ES) and embryonic germ (EG) cells in other species such as stage-specific embryonic antigens SSEA-1, SSEA-3, and SSEA-4, and c-Kit receptor. In the absence of a feeder layer, these cells differentiated into a variety of cell types and formed embryoid bodies (EBs). When cultured for an extended period of time, EBs differentiated into derivatives of three EG layers - mesoderm, ectoderm, and endoderm - which were characterized by detection of specific cell surface markers. Our results indicate that the Z2 cell line is pluripotent and resembles an ES cell line. To our knowledge, this is the first bovine embryonic cell line that has remained pluripotent in culture for more than 150 passages.  相似文献   

6.
长期培养小鼠胚胎干细胞拟胚体(EB)的观察   总被引:1,自引:0,他引:1  
杨科  董娟  徐兰  周桢宁  王沁  丁小燕 《生物工程学报》2008,24(10):1783-1789
胚胎干细胞在体外培养条件下能够维持自我更新,并具有向多种细胞类型分化的能力,因此被广泛用于研究细胞分化的分子机理以及药物筛选.形成拟胚体(Embryoid body,EB)是胚胎干细胞分化常用的技术手段.为了便于今后利用EB做进一步的药物筛选及分化研究,严格规范了形成EB的条件,得到了分化状态均一性很高的EB.利用这一条件,观察到在分化条件下长期培养(长达60 d)的EB中仍有表达各项多能性指标的细胞集落.有关这一现象的进一步分析工作正在进行中.  相似文献   

7.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.  相似文献   

8.
9.
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells.  相似文献   

10.
Embryonic stem (ES)-like cells were isolated from in vivo-produced cat embryos. Total of 101 blastocysts were collected from female cats. The inner cell mass (ICM) were mechanically isolated and cultured on mitomycin-C-treated cat embryonic fibroblast feeder layers in medium supplemented with knockouttrade mark Serum Replacement (KSR-medium) or fetal bovine serum (FBS-medium). Putative ES-like cell colonies developed in both KSR- and FBS-medium conditions, but formed domed and flat colonies, respectively. ICM cell attachment and ES-like cell colony formation were significantly higher in KSR-medium, but subsequent cell proliferation was significantly lower than in FBS-medium. For passaging, 32 and 18 colonies in KSR- and FBS-medium were separated by enzymatic dissociation or mechanical disaggregation. Enzymatic dissociation resulted in cell differentiation; however, mechanical disaggregation generated cells that remained undifferentiated over more than four passages and yielded two cat ES-like cell lines that continued to grow for up to eight passages in FBS-medium. These cells had typical stem cell morphology, expressed high levels of alkaline phosphatase activity, and were positive for the ES cell-markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-3, and SSEA-4. These cells formed embryoid bodies (EBs) in suspension culture after extended suspension culture. When simple EBs were cultured on tissue culture plates, they differentiated into several cell types, including epithelium-like and neuron-like cells. In addition, EBs were positive for mesoderm marker, desmin. After prolonged in vitro culture, some colonies spontaneously differentiated into beating myocardiocytes, and were positive for alpha-actinin. These observations indicate that cat ES-like cells were successfully isolated and characterized from in vivo-produced blastocysts.  相似文献   

11.
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.  相似文献   

12.
13.
14.
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.  相似文献   

15.
16.
17.
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.  相似文献   

18.
Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the morphology of the porcine genital ridge was assessed in embryos harvested on days 22–30 of pregnancy. PGCs from embryos at these stages were cultured to obtain porcine EG cell lines, and EG-like cells were derived from PGCs from embryos harvested on days 24–28 of pregnancy. The EG-like cells expressed Oct4, Sox2, Nanog, SSEA-3, SSEA-4 and alkaline phosphatase (AP). These cells were able to form embryoid bodies (EBs) in suspension culture and differentiate into cells representative of the three germ layers as verified by a-fetoprotein (AFP), α-smooth muscle actin (α-SMA), and Nestin expression. Spontaneous differentiation from the porcine EG-like cells of delayed passage in vitro showed that they could differentiate into epithelial-like cells, mesenchymal-like cells and neuron-like cells. In vitro directed differentiation generated osteocytes, adipocytes and a variety of neural lineage cells, as demonstrated by alizarin red staining, oil red O staining, and immunofluorescence for neuronal class Ⅲ β-tubulin (Tuj1), glial fibrillary protein (GFAP) and galactosylceramidase (GALC), respectively. These results indicate that porcine EG-like cells have the potential for multi-lineage differentiation and are useful for basic porcine stem cell research.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号