首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We investigated the fatty acid distribution in guinea pig alveolar apical membranes at different developmental stages. Fatty acid composition of the purified membranes isolated from guinea pig fetuses (at 65 day, term=68 day), neonates (day 1) and adult males was determined. The levels of arachidonic acid (AA) and docosahexaenoic acid (DHA) were higher in the adult guinea pig alveolar apical membrane phosphatidylethanolamine (PE) fraction (9. 3+/-2.2 and 2.9+/-1.0%, respectively) while in other phospholipids (PL) fractions their levels were low or absent (P<0.01). Furthermore, levels of AA and DHA in the PE fraction of apical membrane increased significantly from fetal (6.6+/-3.0 and 0.8+/-0.4%, respectively) to neonatal life (10.3+/-1.5 and 3.0+/-0.8%, respectively). Increase in the level of DHA (almost four-fold) was much more pronounced than that of AA (P<0.05). As for guinea pig alveolar membranes, EPA and AA were mostly present in the PE fraction in pulmonary adenocarcinoma derived cells (A549 cells), a parallel model of type II pneumocytes, with the levels of AA around three-fold greater than that of EPA, Binding of radiolabelled fatty acids to A549 cells showed no significant differences between the maximum uptake achieved for different fatty acids (AA, 1.7+/-0.2, EPA, 2.3+/-0.3, LA, 1.7+/-0.2, OA, 2.0+/-0.2nmol/mg protein, P>0.5). Once the fatty acids were taken up by these cells AA was mostly identifiable in the monoacylglycerol (MAG) fraction, whereas EPA was equally distributed between the MAG and PL fractions. Oleic acid was mainly present in the triglyceride (TAG) fraction whereas LA was evenly distributed between the TAG, MAG, and PL fractions. Our data demonstrate a preferential distribution of AA and DHA in PE fractions of alveolar apical membranes during development.  相似文献   

2.
Fatty acid metabolism and the contribution of dietary fatty acids to milk cholesteryl ester (CE) and phospholipid (PL) were investigated in normal lactating mothers. The approach used was to feed mixtures of triglycerides containing deuterium-labeled palmitic acid (16:0-2H2), oleic acid (18:1-2H6), and linoleic acid (18:2-2H4). Milk and plasma samples were collected for 72 hr. Triglyceride (TG), CE, and PL fractions from milk, plasma, and lipoprotein were isolated and analyzed by gas-liquid chromatography and mass spectrometry. Data for the milk CE and PL fractions showed a definite selectivity for incorporation of 16:0-2H2 and 18:1-2H6 relative to 18:2-2H4. Based on the ratios of the deuterated fatty acids incorporated into the milk CE and PL samples, their incorporation times and isotopic enrichment data, it appears that these fatty acids are supplied mainly by the TG derived from chylomicrons and very low density lipoproteins. Plasma and lipoprotein CE data showed a progressive increase in 18:2-2H4 content, with 16:0-2H2 and 18:1-2H4 remaining relatively constant over the collection period. Plasma and lipoprotein PL data showed a higher rate for incorporation of 18:2-2H4 than 16:0-2H2 and 18:1-2H6 over the course of the sampling period. Comparison to previous data from adult males indicates lactation does not have a major effect on the general metabolism of these fatty acids. An increase with time in the isotopic enrichment of 18:2-2H4 in the plasma and lipoprotein CE and PL samples was observed which is consistent with in vitro selectivities reported for lecithin:cholesterol acyltransferase and phosphatidylcholine acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of atorvastatin, simvastatin and gemfibrozil on fatty acid composition of plasma phospholipids (PL), cholesterol esters (CE), triglycerides (TG) and red cell membrane ghosts (G) has been determined in appropriate sample populations of individuals with hypertriglyceridemia (HTG) or hypercholesterolemia (HCHL). Treatments were appropriate for the condition, gemfibrozil for HTG and a statin for HCHL. Modifications depend on the drug and lipid fraction examined. Both classes of drugs modify fatty acid composition but gemfibrozil modifications are more numerous and dramatic than are the modifications by statins. Gemfibrozil produces major modifications in fatty acid composition, which are both fatty acid and lipid class specific but generally decreases SFA and increases PUFA (mainly n6) and increases the proportion of fatty acids with chain length of 18C or more. Statins tend to increase chain length but have less effect on saturation. Notably, all three drugs increased arachidonic acid (AA) in PL and CE. Statins decreased gamma-linoleic acid (GLA) in PL and CE but gemfibrozil only increased GLA in TG.  相似文献   

4.
The biochemical essential fatty acid (EFA) status of neonates born after normal and hypertensive pregnancies (PIH) and that of their mothers was assessed by measuring the fatty acid composition of phospholipids (PL), triglycerides (TG) and cholesterol esters (CE) of umbilical cord serum and maternal serum, respectively. Relative contents of linoleic acid of serum PL and CE were significantly lower in mothers with PIH compared to normal pregnancies. Most other (n-6) polyenes in PL tended to be higher under hypertensive conditions. Total maternal (n-3) polyenes of serum PL were significantly higher in PIH, mainly due to clupanodonic acid, 22:5 (n-3), and cervonic acid, 22:6 (n-3). Total maternal (n-7) and (n-9) fatty acids were also significantly higher in PIH (PL and CE). The results indicate that PIH is associated with a relative increased unsaturation of maternal serum PL, which might facilitate the placental transfer of long-chain, polyunsaturated fatty acids. As a result, the neonatal EFA status after PIH only slightly differs from normal.  相似文献   

5.
The two DNA fractions were isolated from sarcoma 37 by the use of the phenol method: supramolecular complex of DNA (SC DNA, 60%) and "phenol" nuclear matrix DNA (PNM DNA, 40%). The lipids in SC DNA represented of light and tightly bound components, the latter was similar to the lipid composition of PNM DNA. SC DNA contains 20 micrograms of neutral lipids (NL) and 6.5 micrograms of phospholipids (PL), while PNM DNA contains 9.8 micrograms of NL and 3.5 micrograms of PL per mg DNA. SC DNA-bound lipids of sarcoma 37 are deficient in free cholesterol (FC, 13%), but rich in cholesterol esters (CE, 39%) and free fatty acids (FFA, 23%); very rich in cardiolipin (CL, 43%) and phosphatidylethanolamine (PE, 28%), but deficient in phosphatidylcholine (PC, 12%). The tumor contains triglycerides (TG) that is absent in DNA of the normal cells. The injection of sarcolysine (10 micrograms/kg) markedly increased (1.5-3 times) the content of all LN and PL fractions in SC DNA, which was accompanied by both the accumulation of FC, TG, PC and the reduction of the remaining lipid fractions in PNM DNA. It is supposed, that DNA-bound lipids may be the target for the action of sarcolysine.  相似文献   

6.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

7.
Oxidation of lipoprotein Lp(a). A comparison with low-density lipoproteins.   总被引:1,自引:0,他引:1  
Aimed at identifying possible mechanisms of the suggested high atherogenicity of Lp(a), its susceptibility for Cu(II)-induced oxidation was studied and compared with that of LDL. Since the content of antioxidants as well as the fatty acid pattern of a lipoprotein greatly affects its oxidizability, Lp(a) and LDL were characterized first with respect to these substances. Paired samples of low-density lipoproteins (LDL) and Lp(a) were isolated from seven individual donors and compared with each other. This study showed that LDL and Lp(a) are very similar with respect to their fatty acid and antioxidant composition. LDL contains approx. 1132 nmol of total fatty acids/mg lipoprotein and LDL 1466 nmol total fatty acids/mg lipoprotein. Analysis of the fatty acid composition of individual lipid classes (cholesteryl esters, phospholipids and triacylglycerols) revealed also a high similarity in the composition of these lipid classes between the two lipoproteins. A comparison of the antioxidant composition showed that Lp(a) contains less alpha-tocopherol than LDL (1.6 +/- 0.35 nmol/mg vs. 2.1 +/- 0.25 nmol/mg LDL). In copper(II)-induced lipid peroxidation experiments we found a striking difference in the susceptibility of individual lipoprotein classes between all donors. In addition, Lp(a) exhibited a 1.2 to 2.4 longer lag-phase than the corresponding LDL preparation from the same blood donor. Treatment of Lp(a) with neuraminidase resulted in a drastic decrease of the lag-phase of Lp(a). Neuraminidase treatment of LDL on the other hand had no significant effects on its susceptibility to oxidation. Supplementation of neuraminidase-treated Lp(a) with N-acetylneuraminic acid (NANA) at concentrations comparable to the naturally occurring amounts of NANA in the Lp(a) protein moiety led to an increase of the lag-phase yielding values which were comparable to those observed with native Lp(a). These results demonstrate that the fatty acid composition as well as the antioxidant concentrations of Lp(a) and LDL are quite similar; despite this fact, Cu2(+)-mediated oxidation of Lp(a) is retarded in comparison to LDL which might be due to the higher content of NANA in Lp(a).  相似文献   

8.
This study was designed to evaluate biochemical changes in the fatty acid (FA) compositions of selected lipid depot (kidney and liver) and absorption (intestine) organs in larvae and metamorphosing sea lamprey, Petromyzon marinus. Palmitic or stearic acids were generally the predominant saturated fatty acids (SFA) before and during metamorphosis, but the greatest proportion of myristic acid occurred in renal triacylglycerol (TG). Monoenes, dienes, and polyenes consist mainly of 16:1, 18:1, and 20:1, 18:2 and 20:2omega6, and 18:4omega3, respectively. Alterations in these predominant fatty acids occurred during lamprey metamorphosis, but depended on tissue, lipid class, and developmental status. During metamorphosis, kidney TG and phospholipid (PL) classes tended to mobilize SFA and enhance the fatty acid unsaturation, as indicated by increased unsaturated/saturated ratio, unsaturation index (USI), and total mean chain length (MCL). There was a tendency to increase saturation in the fatty acids of liver TG and PL classes and intestine TG, FA and monoacylglycerol (MG) classes, but to increase unsaturation in the fatty acids of liver cholesteryl ester (CE), FA and MG classes and intestine PL and CE classes from larva or stage 3 to stage 7. Increased polyunsaturated fatty acids in kidney TG and PL from larvae to stage 5 transformers and intestine PL and CE from stage 3 to stage 7 transformers may reflect an osmoregulatory pre-adaptation. The presence of branched-chain SFA (BCSFA) and the odd number of fatty acids (ONFA) indicated a significant role of detritivores in the benthic larvae. Decreased abundance of BCSFA, ONFA, and 18:2 dienes occurred in the transformed intestine TG as non-trophic metamorphosis proceeded. These data suggest that sea lamprey metamorphosis may proceed in a habitat, dietary, osmoregulatory, energetic, and developmental pre-adaptation of fatty acid composition from benthic filter-feeding larvae to pelagic parasitic juveniles.  相似文献   

9.
Dietary hydroperoxides are being discussed as potential health hazards contributing to oxidative stress-related diseases. However, how food-born hydroperoxides could exert systemic effects remains elusive in view of the limited chances to be absorbed. Therefore, the metabolic fate of 13-HPODE (13-hydroperoxy octadecadienoic acid), 13-HODE (13-hydroxy octadecadienoic acid) and linoleic acid (LA) was investigated in a CaCo-2 cell monolayer as a model of the intestinal epithelium. [1-14C]-13-HPODE, up to a non-cytotoxic concentration of 100 microM, did not cross the CaCo-2 cell monolayer unreduced if applied to the luminal side. The [1 -14C]-HPODE-derived radioactivity was preferentially recovered from intracellular and released diacylglycerols (DG), phospholipids (PL) and cholesterol esterified with oxidized fatty acids (oxCE). A similar distribution pattern was obtained with 13-HODE. In contrast, LA is preferentially incorporated into triacylglycerols (TG), cholesteryl esters (CE) and PL (but mainly released as TG). 13-HPODE dose-dependently decreased the incorporation of LA into released TG, while LA accumulated in cellular and released DGs, effects similarily exerted by 13-HODE. We concluded that food-born hydroperoxy fatty acids are instantly reduced by the gastrointestinal glutathione peroxidase, which was previously shown to persist in selenium deficiency. Accordingly, modulation of the glutathione peroxidases by selenium deprivation/repletion did not modify the disturbance of the lipid metabolism by 13-HPODE. Thus, hydroperoxy fatty acids disturb intestinal lipid metabolism by being esterified as hydroxy fatty acids into complex lipids, and may render lipoproteins synthesized thereof susceptible to further oxidative modifications.  相似文献   

10.
Seasonal changes in the fatty acid composition of phospholipids (PL), monoglycerides (MG), diglycerides (DG), free fatty acids (FA) and triglycerides (TG) separated from oleosomes (lipid bodies) of perennial root nodules of beach pea (Lathyrus maritimus) were analysed. Thin layer chromatography (TLC) revealed that PL and MG are the major lipids in nodule oleosomes. The fatty acid profile and overall double bond index (DBI) varied among lipid classes depending upon the season. High DBI in PL and MG found during late winter and early spring indicated that they may play a major role in winter survival and regeneration of perennial nodules. The DBI of DG was high at the end of the fall season and the DBI of FA and TG was high in summer months. The dominant fatty acids are C16:0 followed by C18:0 and C18:1. The levels of many unsaturated fatty acids such as C18:1, C18:2 and C18:3 increased while saturated fatty acid C18:0 decreased during winter. These unsaturated fatty acids possibly play an important role in the protection of nodule cells from cold stress. Nodules seem to retain some fatty acids and selectively utilize specific fatty acids to survive the winter and regenerate in spring.  相似文献   

11.
Fatty acid profiles of biological specimens from epidemiological/clinical studies can serve as biomarkers to assess potential relationships between diet and chronic disease risk. However, data are limited regarding fatty acid stability in archived specimens following long-term storage, a variable that could affect result validity. Our objective was to determine the effect of prolonged storage at −80°C on the fatty acid profiles of serum cholesteryl ester (CE), triglyceride (TG), and phospholipid (PL) fractions. This was accomplished by determining the fatty acid profile of frozen, archived, previously unthawed serum samples from 22 subjects who participated in a controlled feeding trial. Initial analysis was performed after trial completion and the repeat analysis after 8–10 years of storage using GC. No significant differences were observed among the majority of fatty acids regardless of lipid fraction. Reliability coefficients were high for the fatty acid classes (saturated fatty acid : 0.70, MUFA : 0.90, PUFA : 0.80). When differences were identified, they were limited to low abundance fatty acids (≤1.5 mol%). These differences were quantitatively small and likely attributable to technical improvements in GC methodology rather than sample degradation. Thus, our data demonstrate that storage at −80°C up to 10 years does not significantly influence serum CE, TG, or PL fatty acid profiles.  相似文献   

12.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

13.
We compared the fatty acid compositions and gains of whole body triacylglycerols (TAG) and phospholipids (PL) in anadromous and landlocked Atlantic salmon (Salmo salar) fry, of the same age, fed the same commercial marine oil-rich diet over a 42-day feeding trial. The landlocked strain exhibited significantly (P<0.05) higher growth rate and feed efficiency, due principally to a higher fat retention, particularly of monounsaturated and saturated fatty acids (SFA). n-3 and n-6 long-chain polyunsaturated fatty acid (PUFA) gains and retentions were significantly higher (P<0.05) in the landlocked fry. Great similarities were found in the fatty acid profiles of whole body TAG of both strains. However, marked genotypic differences were observed in the PUFA profiles of whole body PL fractions. The total PUFA, n-3 PUFA and docosahexaenoic acid (DHA) level in PL was significantly higher (P<0.05) while the SFA level, and the PUFA C18/C20 and eicosapentaenoic acid/arachidonic acid ratios were significantly lower (P<0.05) in the anadromous fry than in landlocked fry. Our results indicate that the level of DHA in salmon PL is under strong genetic control and that the capacity for incorporation, and possibly for the conversion of dietary n-3 and n-6 PUFA, is higher in the landlocked strain.  相似文献   

14.
The composition of phospholipids from Mycobacterium convolutum R22 was determined after growth at two temperatures (20 and 30 degrees C) with 1-chlorohexadecane as the substrate. Comparisons were made with the phospholipids of cells grown on n-hexadecane. Phosphatidylinositolmannosides and phosphatidylethanolamine (PE) were the major phospholipids in n-hexadecane-grown cells. In 1-chlorohexadecane-grown cells, phosphatidylinositolmannosides were approximately half of the total phospholipids, with lesser amounts of PE and cardiolipin (CL). The relative level of PE was greater at 20 degrees C (versus that at 30 degrees C) after growth on either substrate. A determination was made of structure and positional distribution of constituent fatty acid in both CL and PE. The relative amount of unsaturated fatty acid was higher at 20 degrees C. There were two C16:1 fatty acids (C16:1 delta 9 and C16:1 delta 11), and these had positional preferences in both CL and PE. The positional sites of chlorinated fatty acids differed in both CL and PE at the two temperatures. The results confirm that microorganisms can specifically distribute chlorinated fatty acids into cellular phospholipids.  相似文献   

15.
The composition of phospholipids from Mycobacterium convolutum R22 was determined after growth at two temperatures (20 and 30 degrees C) with 1-chlorohexadecane as the substrate. Comparisons were made with the phospholipids of cells grown on n-hexadecane. Phosphatidylinositolmannosides and phosphatidylethanolamine (PE) were the major phospholipids in n-hexadecane-grown cells. In 1-chlorohexadecane-grown cells, phosphatidylinositolmannosides were approximately half of the total phospholipids, with lesser amounts of PE and cardiolipin (CL). The relative level of PE was greater at 20 degrees C (versus that at 30 degrees C) after growth on either substrate. A determination was made of structure and positional distribution of constituent fatty acid in both CL and PE. The relative amount of unsaturated fatty acid was higher at 20 degrees C. There were two C16:1 fatty acids (C16:1 delta 9 and C16:1 delta 11), and these had positional preferences in both CL and PE. The positional sites of chlorinated fatty acids differed in both CL and PE at the two temperatures. The results confirm that microorganisms can specifically distribute chlorinated fatty acids into cellular phospholipids.  相似文献   

16.
Weanling female rats raised on a fat-free diet for 8 weeks were then given the same diet supplemented with 0, 0.25, 0.5, or 1% by weight of cholesterol in addition to 10% of safflower oil for 3 days. Fatty acid compositions of cholesteryl esters (CE), triglycerides (TG), and phospholipids (PL) in liver and plasma were examined. Cholesterol feeding increased plasma and liver cholesterol contents and also affected the patterns of n-6 polyunsaturated fatty acids. There were no consistent changes in either plasma and liver TG which contained little 20:3n-6 and 20:4n-6. The levels of 20:3n-6 increased in plasma and liver PL, while proportions of 20:4n-6 decreased in liver and plasma CE. However, the absolute amount of 20:4n-6 in cholesteryl esters increased because of a threefold rise in cholesteryl ester levels. The changes might be attributable to an increased utilization of 20:4n-6 for cholesterol transport and/or an inhibition of delta 5-desaturation of n-6 fatty acids by cholesterol feeding.  相似文献   

17.
Biliary phospholipids (PL) stimulate dietary fat absorption by facilitating intraluminal lipid solubilization and by providing surface components for chylomicron (CM) assembly. Impaired hepatic PL availability induces secretion of large very-low-density lipoproteins, but it is unclear whether CM size depends on biliary PL availability. Biliary PL secretion is absent in multidrug resistance protein 2-deficient (Mdr2(-/-)) mice, whereas it is strongly increased in essential fatty acid (EFA)-deficient mice. We investigated lymphatic CM size and composition in mice with absent (Mdr2(-/-)) or enhanced (EFA deficient) biliary PL secretion and in their respective controls under basal conditions and during enteral lipid administration. EFA deficiency was induced by feeding mice a high-fat, EFA-deficient diet for 8 wk. Lymph was collected by mesenteric lymph duct cannulation with or without intraduodenal lipid administration. Lymph was collected in 30-min fractions for up to 4 h, and lymphatic lipoprotein size was determined by dynamic light-scattering techniques. Lymph lipoprotein subfractions were isolated by ultracentrifugation, and lipid composition was measured. Lymphatic CMs were significantly larger in Mdr2(-/-) mice than in Mdr2(+/+) controls either without (+50%) or with (+25%) enteral lipid administration, and molar core-surface ratios were increased [triglyceride (TG)-to-PL ratio: 4.4 +/- 1.4 in Mdr2(-/-) mice vs. 2.7 +/- 0.8 in Mdr2(+/+) mice, P < 0.001]. In contrast, EFA-deficient mice secreted lipoproteins into lymph that were significantly smaller than in EFA-sufficient controls (173 +/- 32 vs. 236 +/- 47 nm), with correspondingly decreased core-surface ratios (TG-to-PL ratio: 3.0 +/- 1.0 in EFA-deficient mice vs. 6.0 +/- 1.9 in EFA-sufficient mice, P < 0.001). CM size increased during fat absorption in both EFA-deficient and EFA-sufficient mice, but the difference between the groups persisted. In conclusion, the present results strongly suggest that the availability of biliary PL is a major determinant of the size of intestinally produced lipoproteins both under basal conditions and during lipid absorption. Altered CM size may have physiological consequences for postprandial CM processing.  相似文献   

18.
Although several studies have analyzed the fatty acid profile of phospholipids (PL) and, to a lesser degree, triacylglycerols (TG) in one or more tissues concurrently, a systematic comparison of the fatty acid composition of different tissues and/or lipid classes is lacking. The purpose of the present study was to compare the fatty acid composition of major lipid classes (PL and TG) in the rat serum, soleus muscle, extensor digitorum longus muscle and the heart. Lipids were extracted from these tissues and analyzed by a combination of thin-layer chromatography and gas chromatography. We found many significant differences in various tissues and lipid classes. Serum had the most distinct fatty acid profile in PL but this "uniqueness" was less apparent in TG, where differences among tissues were in general less frequent than in PL. These two skeletal muscles exhibited similar fatty acid composition in both lipid classes despite their different muscle fiber type composition, denoting that fiber type is not a major determinant of the fatty acid composition of rat skeletal muscle. The fatty acid profile of heart PL was the most different from that of the other tissues examined. PL were rich in polyunsaturated fatty acids, whereas TG were rich in monounsaturated fatty acids. Although the reasons for the differences in fatty acid profile among the tissues examined are largely unknown, it is likely that these differences have an impact upon numerous biological functions.  相似文献   

19.
Chronic ethanol exposure is known to affect deacylation-reacylation of membrane phospholipids (PL). In our earlier studies we have demonstrated that chronic exposure to ethanol (EtOH) leads to a progressive increase in membrane phospholipase A2 (PLA2) activity. In the current study, we investigated the effects of chronic EtOH exposure on the incorporation of different free fatty acids (FFAs) into membrane PL. The results suggest that the incorporation of fatty acids into four major PL varied from 9.6 fmol/min/mg protein for docosahexaenoic acid (DHA) into phosphatidylinositol (PI) to 795.8 fmol/min/mg protein for linoleic acid (LA) into phosphatidylcholine (PC). These results also suggest a preferential incorporation of DHA into PC; arachidonic acid (AA) into PI; oleic acid into phosphatidylethanolamine (PE) and PC; LA into PC and stearic acid into PE. Chronic EtOH exposure affected the incorporation of unsaturated fatty acid into PI, phosphatidylserine (PS) and PC. However, EtOH did not affect significantly the incorporation of any of the fatty acids (FA) studied into PE. No significant differences were observed with the stearic acid. It is suggested that acyltransferases may play an important role in the membrane adaptation to the injurious effects of EtOH.  相似文献   

20.
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号