首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
4.
5.
Z Zhao  W Hong  Z Zeng  Y Wu  K Hu  X Tian  W Li  Z Cao 《The Journal of biological chemistry》2012,287(36):30181-30190
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.  相似文献   

6.
7.
Hong MH  Chou YC  Wu YC  Tsai KN  Hu CP  Jeng KS  Chen ML  Chang C 《PloS one》2012,7(1):e30360
Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.  相似文献   

16.
17.
18.
19.
Our recent study reported that ATP1B3 inhibits hepatitis B virus(HBV) replication via inducing NF-κB activation.However, ATP1B3 mutants which were defective in NF-κB activation still maintained the moderate degree of suppression on HBV replication, suggesting that another uncharacterized mechanism is also responsible for ATP1B3-mediated HBV suppression. Here, we demonstrated that ATP1B3 reduced the expression of HBV envelope proteins LHBs, MHBs and SHBs, but had no effect on intracellular HBV DNA, RNA levels as well as HBV promoter activities. Further investigation showed that proteasome inhibitor MG132 rescued ATP1B3-mediated envelope proteins degradation, demonstrating that proteasome-dependent pathway is involved in ATP1B3-induced degradation of envelope proteins. Co-IP showed that ATP1B3 interacts with LHBs and MHBs and induces LHBs and MHBs polyubiquitination. Immunofluorescence colocalization analysis confirmed LHBs and MHBs colocalized with ATP1B3 together. Our work provides important information for targeting ATP1B3 as a potential therapeutic molecule for HBV infection.  相似文献   

20.
【目的】分析丙型肝炎病毒(HCV)核心蛋白(CORE)稳定表达对磷酸烯醇式丙酮酸羧基酶(PCK1)转录水平的影响,并分析HCV CORE调控PCK1转录的分子机制,为进一步阐明HCV感染致2型糖尿病机理的探讨提供新的思路。【方法】利用反转录病毒表达系统构建稳定表达HCV CORE的Huh7-lunet-core细胞系。采用Real-time PCR和萤光素酶报告基因技术检测Huh7-lunet-core细胞系中PCK1、FOXO1以及PGC-1α转录水平变化,并结合Western blot分析FOXO1的活性变化。【结果】HCV CORE的稳定表达显著增强PCK1的转录水平,HCV CORE不影响FOXO1的转录和表达水平,但降低FOXO1的磷酸化水平,激活了FOXO1的转录活性,并增强PGC-1α的mRNA表达水平。【结论】HCV CORE在Huh7-lunet细胞中的稳定表达激活FOXO1的转录活性,并与PGC-1α协同作用,上调PCK1的转录,从而导致肝糖异生过度发生,对HCV CORE调控PCK1转录的分子机制的揭示可能为HCV感染相关的糖尿病的治疗提供新的靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号