首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25893篇
  免费   2813篇
  国内免费   3788篇
  2024年   30篇
  2023年   419篇
  2022年   605篇
  2021年   1336篇
  2020年   1107篇
  2019年   1306篇
  2018年   1209篇
  2017年   905篇
  2016年   1165篇
  2015年   1903篇
  2014年   2094篇
  2013年   2224篇
  2012年   2701篇
  2011年   2388篇
  2010年   1560篇
  2009年   1482篇
  2008年   1611篇
  2007年   1421篇
  2006年   1292篇
  2005年   1056篇
  2004年   861篇
  2003年   774篇
  2002年   658篇
  2001年   345篇
  2000年   315篇
  1999年   286篇
  1998年   224篇
  1997年   154篇
  1996年   140篇
  1995年   115篇
  1994年   130篇
  1993年   76篇
  1992年   106篇
  1991年   73篇
  1990年   59篇
  1989年   47篇
  1988年   35篇
  1987年   52篇
  1986年   32篇
  1985年   34篇
  1984年   21篇
  1983年   20篇
  1982年   18篇
  1981年   13篇
  1979年   7篇
  1978年   9篇
  1973年   8篇
  1972年   8篇
  1971年   7篇
  1970年   7篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
2.
In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.  相似文献   
3.
Yan  Xue  Liu  Jia  Wu  Ke-Xin  Yang  Nan  Pan  Li-Ben  Song  Ying  Liu  Yang  Tang  Zhong-Hua 《Journal of Plant Growth Regulation》2022,41(6):2421-2434
Journal of Plant Growth Regulation - Early-spring plants are a special type of plant that complete their life cycle promptly in cold, early spring. Very little effort has been made into researching...  相似文献   
4.
5.
6.
Li  Xinyu  Zheng  Shixuan  Han  Tao  Song  Fei  Wu  Guoyao 《Amino acids》2020,52(11):1491-1503

Largemouth bass (Micropterus salmoides, a carnivorous fish native to North America) prefers to utilize amino acids as energy sources rather than glucose and fatty acids. However, little is known about the nutritional regulation of substrate oxidation in the fish. Therefore, this study was conducted to determine whether the oxidation of glutamate, glutamine, glucose and palmitate in its tissues might be influenced by dietary protein intake. Juvenile largemouth bass (initial weight 18.3 ± 0.1 g) were fed three isocaloric diets containing 40%, 45% and 50% protein for 8 weeks. The growth performance, energy retention, and lipid retention of juvenile fish increased with increasing dietary protein levels. The rate of oxidation of glutamate by the intestine was much greater than that of glutamine, explaining why increasing the dietary protein content from 40% to 50% had no effect on the serum concentration of glutamate but increased that of glutamine in the fish. The liver of fish fed the 50% protein diet had a higher (P < 0.05) rate of glutamine oxidation than that in the 40% and 45% protein groups. In contrast, augmenting dietary protein content from 40% to 45% increased (P < 0.05) both glutamine and glutamate oxidation in the proximal intestine of the fish and renal glutamine oxidation, without changes in intestinal or renal AA oxidation between the 45% and 50% protein groups. Furthermore, the rates of glucose oxidation in the liver, kidney, and intestine of largemouth bass were decreased in response to an  increase in dietary  protein content   from 40% to 45% and a concomitant decrease in dietary starch content from 22.3% to 15.78%, but did not differ between the 45% and 50% protein groups.   The rates of oxidation of glucose in skeletal muscle and those of palmitate in all tissues (except for the  kidney) were not affected by the diets. Collectively, these results indicate that the largemouth bass can regulate substrate metabolism in a  tissue-specific manner to favor protein and lipid gains as dietary protein content increases from 40% to 50% and have a lower ability to oxidize fatty acids and glucose than amino acids regardless of the dietary protein intake. 

  相似文献   
7.
MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity.  相似文献   
8.
9.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
10.
Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号