首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature‐limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.  相似文献   

2.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

3.
Climate change is affecting the composition and functioning of ecosystems across the globe. Mountain ecosystems are particularly sensitive to climate warming since their biota is generally limited by low temperatures. Cryptogams such as lichens and bryophytes are important for the biodiversity and functioning of these ecosystems, but have not often been incorporated in vegetation resurvey studies. Hence, we lack a good understanding of how vascular plants, lichens and bryophytes respond interactively to climate warming in alpine communities. Here we quantified long-term changes in species richness, cover, composition and thermophilization (i.e. the increasing dominance of warm-adapted species) of vascular plants, lichens and bryophytes on four summits at Dovrefjell, Norway. These summits are situated along an elevational gradient from the low alpine to high alpine zone and were surveyed for all species in 2001, 2008 and 2015. During the 15-year period, a decline in lichen richness and increase in bryophyte richness was detected, whereas no change in vascular plant richness was found. Dwarf-shrub abundance progressively increased at the expense of lichens, and thermophilization was most pronounced for vascular plants, but occurred only on the lowest summits and northern aspects. Lichens showed less thermophilization and, for the bryophytes, no significant thermophilization was found. Although recent climate change may have primarily caused the observed changes in vegetation, combined effects with non-climatic factors (e.g. grazing and trampling) are likely important as well. At a larger scale, alpine vegetation shifts could have a profound impact on biosphere functioning with feedbacks to the global climate.  相似文献   

4.
The arctic and alpine regions are predicted to experience some of the highest rates of climate change, and the arctic vegetation is expected to be especially sensitive to such changes. Understanding the ecological and evolutionary responses of arctic plant species to changes in climate is therefore a key objective. Geothermal areas, where natural temperature gradients occur over small spatial scales, and without many of the confounding environmental factors present in latitudinal and other gradient studies, provide a natural experimental setting in which to examine the response of arctic–alpine plants to increasing temperatures. To test the ecological and evolutionary response of the circumpolar alpine bistort Persicaria vivipara to temperature, we collected plant material and soil from areas with low, intermediate and high soil temperatures and grew them at three different temperatures in a three-factorial growth chamber experiment. At higher experimental soil temperatures, sprouting was earlier and plants had more leaves. Sprouting was earlier in soil originating from intermediate temperature and plants had more leaves when grown in soil originating from low temperatures. We did not find evidence of local adaptation or genetic variation in reaction norms among plants originating from areas with low, intermediate and high soil temperature. Our findings suggest that the alpine bistort has a strong plastic response to warming, but that differences in soil temperature have not resulted in genetic differentiation. The lack of an observed evolutionary response may, for example, be due to the absence of temperature-mediated selection on P. vivipara, the low rate of sexual recombination, or high levels of gene flow balancing differences in selection. When placed within the context of other studies, we conclude that arctic–alpine plant species often show strong plastic responses to spring warming, while evidence of evolutionary responses varies among species.  相似文献   

5.
THE ECOLOGY OF ARCTIC AND ALPINE PLANTS   总被引:9,自引:0,他引:9  
‘How are plants adapted to the low temperatures and other stresses of arctic and alpine environments ?’ At present it is not possible to answer this question completely. Much work remains to be done, particularly on low-temperature metabolism, frost resistance, and the environmental cues and requirements for flowering, dormancy, regrowth, and germination. However, in brief, we can say that plants are adapted to these severe environments by employing combinations of the following general characteristics: 1. Life form: perennial herb, prostrate shrub, or lichen. Perennial herbs have greatest part of biomass underground. 2. Seed dormancy: generally controlled by environment; seeds can remain dormant for long periods of time at low temperatures since they require temperatures well above freezing for germination. 3. Seedling establishment: rare and very slow; it is often several years before a seedling is safely established. 4. Chlorophyll content: in both alpine and arctic ecosystems not greatly different on a land-area basis from that in temperate herbaceous communities. Within a single species there is more chlorophyll in leaves of arctic populations than in those of alpine populations. 5. Photosynthesis and respiration: (a) These are at high rates for only a few weeks when temperatures and light are favourable. (b) Optimum photosynthesis rates are at lower temperatures than for ordinary plants; rates are both genetically and environmentally controlled with phenotypic plasticity very marked. (c) Dark respiration is higher at all temperatures than for ordinary plants; rate is both genetically and environmentally controlled, with phenotypic plasticity very pronounced, i.e. low-temperature environment increases the rate at all temperatures. (d) Alpine plants have higher light-saturation values in photosynthesis than do arctic or lowland plants; light saturation closely tied to temperature. (e) There is some evidence that alpine plants can carry on photosynthesis at lower carbon dioxide concentrations than can other plants. (f) Annual productivity is low, but daily productivity during growing season can be as high as that of most temperate herbaceous vegetation. Productivity can be increased by temperature, nutrients, or water. 6. Drought resistance: most drought stress in winter in exposed sites is due to frozen soils and dry winds. It is met by decreased water potentials, higher concentrations of soluble carbohydrates, and closed stomates. Little drought resistance in snowbank plants. Alpine plants adapted to summer drought stress can carry on photosynthesis at low water potentials; alpine or arctic plants of moist sites cannot do this. 7. Breaking of dormancy: controlled by mean temperatures near or above 0° C., and in some cases by photoperiod also. 8. Growth: very rapid even at low positive temperatures. Respiration greatly exceeds photosynthesis in early re-growth of perennials. Internal photosynthesis may occur in hollow stems of larger plants during early growth. Nitrogen and phosphorus often limiting in cold soil. 9. Food storage: characteristic of all alpine and arctic plants except annuals. Carbohydrates mostly stored underground in herbaceous perennials. Lipids in old leaves and stems of prostrate evergreen shrubs. Depleted in early growth, and usually restored after flowering. 10. Winter survival: survival and frost resistance are excellent after hardening. Cold resistance closely tied to content of soluble carbohydrates, particularly raffinose. 11. Flowering: flower buds are pre-formed the year before. Complete development and anthesis dependent upon temperature of the flowering year and also, in some cases, upon photoperiod. 12. Pollination: mostly insect-pollinated in alpine regions and even in Arctic, but to a lesser extent. Wind-pollination increasingly more important with increasing latitude. Diptera more important than bees in the Arctic and in the highest mountains. 13. Seed production: opportunistic, and dependent upon temperature during flowering period and latter half of growing season. 14. Vegetative reproduction: by rhizomes, bulbils, or layering. More common and important in Arctic than in alpine areas. 15. Onset of dormancy: triggered by photoperiod, low temperatures, and drought. Dormant plant extremely resistant to low temperatures.  相似文献   

6.
Arctic and alpine habitats occur along complex environmental gradients, and over an extensive geographical range. Despite some selective forces common to these habitats, evolutionary divergence among populations of arctic and alpine plants along this gradient is expected. Of particular significance, both in the context of life-history theory and for implications of climate change, are the few annual species that have adapted to the constraints of an unpredictable, short growing season. In this study, morphological, life-history and phenological characters were found to differ significantly among six widely distributed populations of the arctic-alpine annual Koenigia islandica. On the basis of morphology and life-history traits, populations from high latitudes, with the exception of Svalbard, performed better in simulated arctic conditions, whereas the low latitude alpine plants from Colorado showed enhanced performance under simulated alpine conditions. On the basis of phenology, the six populations can be clearly grouped into arctic, high latitude alpine and alpine populations: arctic plants were found to develop and flower earliest; alpine plants latest. Because these results were obtained using seeds harvested from plants first grown through a complete generation in growth chambers, they indicate strong genetic differentiation. We discuss possible adaptive explanations for observed differences among the six geographically divergent populations.  相似文献   

7.
The Hengduan Mountains region (HMR) on the southeastern Tibetan Plateau, supports a high diversity of herbs, particularly in its subalpine to alpine ecosystems, due to high altitude and cool temperate climate. Current understanding on the formation of such herbaceous richness is based chiefly on molecular phylogenies; however, direct geological evidence is lacking because herbs are rarely preserved as macroscopic fossils. In this study, we present abundant fossil fruits and seeds of herbs from the late Pliocene Heqing Basin in the southern HMR. Our systematic analysis shows the presence of at least 18 species belonging to 11 genera, that is, Ranunculus, Corydalis, Rumex, Polygonum, Chenopodium, Stellaria, Fragaria, Astragalus, Aster, Carex, and Schoenoplectus, of which Polygonum is most abundant followed by Astragalus. This finding throws the first light from fossil evidence on the rise of herbaceous diversity in the region. We interpret the local assembly of these herbs as resulting from rapid pre-Pliocene species diversifications of many herbaceous groups in the HMR. As nowadays most of these herbs grow primarily in meadows and a few occur as subaquatic plants, we suggest an open meadow hosting some scattered shrubs in the vicinity of a vegetated wetland in the Heqing Basin during the late Pliocene. This provides the first direct evidence of past treeless open vegetation within the HMR and thus improves our knowledge of vegetation evolution in the region. We suggest that the uplift-induced climate cooling and monsoon-associated precipitation seasonality are potentially the key driving forces for the opening of meadow vegetation in the HMR.  相似文献   

8.
Cold‐adapted organisms with current arctic–alpine distributions have persisted during the last glaciation in multiple ice‐free refugia, leaving footprints in their population structure that contrast with temperate plants and animals. However, pathogens that live within hosts having arctic–alpine distributions have been little studied. Here, we therefore investigated the geographical range and population structure of a fungus parasitizing an arctic–alpine plant. A total of 1437 herbarium specimens of the plant Silene acaulis were examined, and the anther smut pathogen Microbotryum silenes‐acaulis was present throughout the host's geographical range. There was significantly greater incidence of anther smut disease in more northern latitudes and where the host locations were less dense, indicating a major influence of environmental factors and/or host demographic structure on the pathogen distribution. Genetic analyses with seven microsatellite markers on recent collections of 195 M. silenes‐acaulis individuals revealed three main genetic clusters, in North America, northern Europe and southern Europe, likely corresponding to differentiation in distinct refugia during the last glaciation. The lower genetic diversity in northern Europe indicates postglacial recolonization northwards from southern refugia. This study combining herbarium surveys and population genetics thus uniquely reveals the effects of climate and environmental factors on a plant pathogen species with an arctic–alpine distribution.  相似文献   

9.
The circumarctic ranges of arctic‐alpine plants are thought to have been established in the late Pliocene/early Pleistocene, when the modern arctic tundra was formed in response to climate cooling. Previous findings of range‐wide genetic structure in arctic‐alpine plants have been thought to support this hypothesis, but few studies have explicitly addressed the temporal framework of the genetic structure. Here, we estimated the demographic history of the genetic structure in the circumarctic Kalmia procumbens using sequences of multiple nuclear loci and examined whether its genetic structure reflects prolonged isolation throughout the Pleistocene. Both Bayesian clustering and phylogenetic analyses revealed genetic distinction between alpine and arctic regions, whereas detailed groupings were somewhat discordant between the analyses. By assuming a population grouping based on the phylogenetic analyses, which likely reflects a deeper intraspecific divergence, we conducted model‐based analyses and demonstrated that the intraspecific genetic divergence in Kprocumbens likely originated during the last glacial period. Thus, there is no need to postulate range separation throughout the Pleistocene to explain the current genetic structure in this species. This study demonstrates that range‐wide genetic structure in arctic‐alpine plants does not necessarily result from the late Pliocene/early Pleistocene origin of their circumarctic ranges and emphasizes the importance of a temporal framework of the current genetic structure for understanding the biogeographic history of the arctic flora.  相似文献   

10.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

11.
Previous studies on large‐scale patterns in plant richness and underlying mechanisms have mostly focused on forests and mountains, while drylands covering most of the world's grasslands and deserts are more poorly investigated for lack of data. Here, we aim to 1) evaluate the plant richness patterns in Inner Asian drylands; 2) compare the relative importance of contemporary environment, historical climate, vegetation changes, and mid‐domain effect (MDE); and 3) explore whether the dominant drivers of species richness differ across growth forms (woody vs herbaceous) and range sizes (common vs rare). Distribution data and growth forms of 13 248 seed plants were compiled from literature and species range sizes were estimated. Generalized linear models and hierarchical partitioning were used to evaluate the relative contribution of different factors. We found that habitat heterogeneity strongly affected both woody and herbaceous species. Precipitation, climate change since the mid‐Holocene and climate seasonality dominated herbaceous richness patterns, while climate change since the Last Glacial Maximum dominated woody richness patterns. Rare species richness was strongly correlated with precipitation, habitat heterogeneity and historical climatic changes, while common species richness was strongly correlated with MDE (woody) or climate seasonality (herbaceous). Temperature had little effects on the species richness patterns of all groups. This study represents the first evaluation of the large‐scale patterns of plant species richness in the Inner Asian drylands. Our results suggest that increasing water deficit due to anthropogenic activities combined with future global warming may increase the extinction risk of many grassland species. Rare species (both herbaceous and woody) may face severe challenges in the future due to increased habitat destruction caused by urbanization and resource exploitation. Overall, our findings indicate that the hypotheses on species richness patterns based on woody plants alone can be insufficient to explain the richness patterns of herbaceous species.  相似文献   

12.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

13.
14.
气候变化显著影响了高寒植物物候期及生长模式, 从而改变了高寒生态系统功能。而高寒植物物候期和生长状况对气候变化的响应程度, 与其自身资源分配策略有关。为了更好地探究气候变化下高寒植物繁殖物候及生长的规律, 该研究以青藏高原高寒草甸为研究对象, 按生物量从高到低选取15种常见植物, 其生物量之和占样地总生物量80%以上, 采用红外辐射器模拟增温的方法, 利用同质园实验, 观测无种间竞争条件下, 增温2年间植物返青、现蕾、开花以及结实物候, 并监测了植株高度。研究结果表明: (1)在功能群水平上, 增温使豆科类植物的返青、现蕾和开花时间分别显著提前了(8.21 ± 1.81)、(9.14 ± 2.41)和(10.14 ± 2.05) d, 使其开花持续时间显著延长了(6.14 ± 1.52) d, 而增温对其他功能群物候事件无显著影响。增温对高寒植物物候的影响存在种间及年际间差异, 但总体上增温使大多数高寒植物繁殖物候提前并且开花持续时间延长, 将更多的资源更多地分配到繁殖生长上。(2)增温显著降低了杂类草植物的植株高度(平均降低(3.58 ± 0.96) cm), 但对豆科类、禾草类及莎草类功能群植株高度没有显著影响。 增温对高寒植物植株高度的影响存在显著的种间差异以及年际差异。综上所述, 未来气候变暖背景下, 青藏高原高寒植物群落可能更早进入繁殖阶段, 从而降低在营养生长上的资源分配。另外, 由于各物种繁殖能力和营养生长对温度变化响应的差异, 气候变暖将导致高寒植物群落中各物种盖度的变化, 进而改变群落物种组成, 从而影响高寒生态系统的功能。  相似文献   

15.
Biotic interactions may strongly affect the distribution of individual species and the resulting patterns of species richness. However, the impacts can vary depending on the species or taxa examined, suggesting that the influences of interactions on species distributions and diversity are not always straightforward and can be taxon-contingent. The aim of this study was therefore to examine how the importance of biotic interactions varies within a community. We incorporated three biotic predictors (cover of the dominant vascular species) into two correlative species richness modelling frameworks to predict spatial variation in the number of vascular plants, bryophytes and lichens in arctic–alpine Fennoscandia, in N Europe. In addition, predictions based on single-species distribution models were used to determine the nature of the impact (negative vs. positive outcome) of the three dominant species on individual vascular plant, bryophyte and lichen species. Our results suggest that biotic variables can be as important as abiotic variables, but their relative contributions in explaining the richness of sub-dominant species vary among dominant species, species group and the modelling framework implemented. Similarly, the impacts of biotic interactions on individual species varied among the three species groups and dominant species, with the observed patterns partly reflecting species’ biogeographic range. Our study provides additional support for the importance of biotic interactions in modifying arctic–alpine biodiversity patterns and highlights that the impacts of interactions are not constant across taxa or biotic drivers. The influence of biotic interactions, including the taxon contingency and range-based impacts, should therefore be accounted for when developing biodiversity forecasts.  相似文献   

16.
氮沉降是驱动生物多样性变化的重要因素之一。一般认为氮沉降会改变物种多样性, 而且在外源氮添加条件下, 禾草类植物和落叶灌木比杂类草和常绿灌木更具竞争优势。不过该结论更多是从高寒草甸和荒漠草原等生态系统中得到, 主要是针对同一生活型内植物之间的竞争关系, 不涉及不同生活型植物之间的相互作用, 并且由于草原和草甸等生态系统没有明显的垂直结构, 同一层次中植物的高度差异较小, 有可能高估了光照因素对植物的作用。因此从森林生态系统入手, 可以进一步阐述不同生活型植物对氮沉降的响应。本文以我国北方典型的落叶阔叶林——辽东栎(Quercus wutaishanica)林为研究对象, 设置CK (0 kg N·ha -1·yr -1)、N50 (50 kg N·ha -1·yr -1)和N100 (100 kg N·ha -1·yr -1) 3个梯度氮添加实验, 模拟氮沉降对温带森林生物多样性的影响。8年连续的氮添加实验结果显示: (1)氮添加显著降低了林下植物的物种丰富度和多样性, 改变了群落的物种组成; (2)氮添加提高了灌木植物的物种丰富度和多样性; 降低了草本植物的丰富度; (3)氮添加降低了禾草类植物的重要值, 提高了杂类草的重要值。该研究表明, 长期氮添加会显著改变林下植物的物种组成, 不同生活型植物对氮添加的响应亦有所差别。造成该现象的原因可能是由土壤环境变化(如养分含量提高, pH值下降)和植物获取光照能力强弱(如灌木植物获取光资源要多于草本植物)导致。  相似文献   

17.
Understanding the biogeographic patterns of root-associated fungi and their sensitivity to temperature may improve predictions of future changes in terrestrial biodiversity and associated ecosystem processes, but data are currently limited. Anticipating change will require combining observational data, which predict how climatic factors limit current species distributions, with direct manipulations of climate, which can isolate responses to specific climate variables. Root endophytes are common symbionts of plants, particularly in arctic and alpine environments, yet their responses to climate warming are not resolved. Here, we directly cultured endophytic fungi from roots collected along altitudinal gradients in replicated mountain watersheds and from a 27 y field warming experiment in the Rocky Mountains, USA, to improve understanding of climate impacts on fungal root endophytes. Fungal taxa that were common at high elevations declined most under climate warming, whereas low elevation dominants responded neutrally or increased with experimental warming. Altitudinal gradients in fungal communities were strongly specific to the plant host species. Specifically, Poa species had 25–60% greater fungal isolate abundance and 25–38% greater fungal diversity at high elevations than at low elevation sites. In contrast, Festuca thurberi had 64% lower fungal diversity on roots at high elevation than at low elevation. Our results help to improve understanding of the potential for climate change to alter plant-fungal interactions in mountain ecosystems.  相似文献   

18.
Changes in growing season temperature and duration may have profound effects on the population dynamics of arctic and alpine plant species in snow-bed and fell-field habitats. We examined how a typical herbaceous pioneer species, Ranunculus glacialis, responded to experimental climate change in open-top chambers for three seasons at an alpine site in southern Norway. Warming had no significant effect on any reproductive, growth or phenological variables, except for seed weight, which increased significantly during the first 2 ears. Despite large differences in average date of snowmelt among years, average reproductive output and ramet size differed little among years. Within-year variation in date of snowmelt had no impact on seed number or weight in either control or warmed plots. Leaf width and ramet leaf number decreased significantly with later snowmelt within a year. Experimental warming reduced the negative effect on ramet size of late snowmelt within a year to some extent. In general, R. glacialis reacts contrary to most other arctic/alpine species to experimental warming. Species with such low responsiveness to environmental conditions may be particularly vulnerable to climatic change, especially if their habitat is invaded by other species with higher phenotypic plasticity and a better competitive ability.  相似文献   

19.
Rough mountain terrain offers climatic conditions (niches) to plants and animals poorly represented by conventional climate station data. However, the extent to which actual temperatures deviate from those of the freely circulating atmosphere had never been assessed at a landscape level. Here, we quantify thermal life conditions across topographically rich mountain terrain by using a combination of thermal (IR) imagery of surface temperature with data from a large number of miniature data loggers buried at 3 cm soil depth. The data obtained from six alpine (Alps) and arctic‐alpine slopes (Norway, Sweden, Svalbard) evidence persistent root zone temperatures of 2–4 K above air temperature during summer. Surface temperatures show strong positive (2–9 K) and negative (3–8 K) deviations from air temperature on bright days and clear nights, respectively. As to be expected, south oriented slopes are warmer than west and north slopes but microclimatic variation on clear sky days was strong within all slopes, with 8.4±2.5 K (mean±SD) surface temperature differences persisting over several hours per day along horizontal (i.e., equal elevation) transects. Life conditions of alpine organisms are thus strongly decoupled from conditions in the free atmosphere and cannot reliably be inferred from climate station data in both, temperate and arctic latitudes. Microtopography can mimic temperature differences of large elevational (or latitudinal) gradients over very short horizontal distances. This is important in the context of climate change because it shows that species do not necessarily need to climb several hundred meters in elevation to escape the warmth. Quite often, few meters of horizontal shift will do. For plants unable to, or too slow to adapt to a warmer climate, thermal microhabitat mosaics offer both refuge habitats as well as stepping stones as atmospheric temperatures rise.  相似文献   

20.
高山和极地植物功能生态学研究进展   总被引:10,自引:0,他引:10  
由于环境条件恶劣,所以高山地区(特别是树木分布线以上区域)和极地地区通常被认为是陆地上最为极端的生境之一,但是高山和极地区域却也拥有众多极具价值的生物资源。因此自1896年以来,作为生物进化研究中的热点和难点。高山和极地植物对生境的适应机制和策略一直倍受研究者们的关注。本文以植物生态学、植物生理学、气象学等学科资料,分析了高山和北极植物的特有生活型,并认为它是一种主要的适应机制。通过对全球主要高山和极地植物生长地的局部气候特点的分析,作者肯定了植物的特化适应现象与极端环境各因素间存在的密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号