首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization patterns.  相似文献   

2.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

3.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   

4.
Understanding the factors determining the distribution of parasites and pathogens in natural systems is essential for making predictions about the spread of emerging infectious disease. Here, we report the distribution of the fungal anther‐smut disease, caused by Microbotryum spp., on populations of the European wildflower Silene vulgaris over a range of elevations. A survey of several geographically distinct mountains in the southern French alps found that anther‐smut disease was restricted to high elevations, rarely observed below 1300 m despite availability of hosts below this elevation. Anther smut causes host‐sterility, and is recognized as a model system for natural host–pathogen interactions, sharing common features with vector‐borne and sexually‐transmitted disease in animals. In such systems, many biotic and abiotic factors likely to change over ecological gradients can influence disease epidemiology, including host spatial structure, pathogen infectivity, host resistance, and vector behavior. Here, we tested whether host population size, density, or connectivity also declined across elevation, and whether these epidemiologically relevant factors explained the observed disease distribution. We found that while none of these factor means changed across elevation, disease was significantly more likely to occur at both higher elevations and in larger populations, the majority of which were found above 1300 m. The break in disease incidence was also associated with an apparent scarcity of these larger host populations between 1000 and 1300 m in elevation. Examining variation in climatic factors among host populations, we also showed that the probability of disease was higher in areas with historically colder, wetter, and more stable conditions. The restricted distribution of anther‐smut disease in high‐elevation S. vulgaris provides an opportunity for empirical study on range limits and disease distribution in natural alpine communities that are considered particularly sensitive to the effects of climate change.  相似文献   

5.
The occurrence of multiple pathogen species on a shared host species is unexpected when they exploit the same micro‐niche within the host individual. One explanation for such observations is the presence of pathogen‐specific resistances segregating within the host population into sites that are differentially occupied by the competing pathogens. This study used experimental inoculations to test whether specific resistances may contribute to the maintenance of two species of anther‐smut fungi, Microbotryum silenes‐inflatae and Microbotryum lagerheimii, in natural populations of Silene uniflora in England and Wales. Overall, resistance to the two pathogens was strongly positively correlated among host populations and to a lesser degree among host families within populations. A few instances of specific resistance were also observed and confirmed by replicated inoculations. The results suggest that selection for resistance to one pathogen may protect the host from the emergence via host shifts of related pathogen species, and conversely that co‐occurrence of two species of pathogens may be dependent on the presence of host genotypes susceptible to both.  相似文献   

6.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

7.
The competitive exclusion principle postulates that different species can only coexist in sympatry if they occupy distinct ecological niches. The goal of this study was to understand the geographical distribution of three species of Microbotryum anther‐smut fungi that are distantly related but infect the same host plants, the sister species Silene vulgaris and S. uniflora, in Western Europe. We used microsatellite markers to investigate pathogen distribution in relation to host specialization and ecological factors. Microbotryum violaceo‐irregulare was only found on S. vulgaris at high elevations in the Alps. Microbotryum lagerheimii could be subdivided into two genetically differentiated clusters, one on S. uniflora in the UK and the second on S. vulgaris in the Alps and Pyrenees. The most abundant pathogen species, M. silenes‐inflatae, could be subdivided into four genetic clusters, co‐occurring in the Alps, the UK and the Pyrenees, and was found on both S. vulgaris and S. uniflora. All three fungal species had high levels of homozygosity, in agreement with the selfing mating system generally observed in anther‐smut fungi. The three pathogen species and genetic clusters had large range overlaps, but occurred at sites with different elevations, temperatures and precipitation levels. The three Microbotryum species thus do not appear to be maintained by host specialization or geographic allopatry, but instead may occupy different ecological niches in terms of environmental conditions.  相似文献   

8.
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land‐bridge route deriving from a “Carpathian” glacial refugium and one via a north‐eastern route from an “Eastern” glacial refugium near the Ural Mountains. Clustering of genome‐wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red‐backed voles (Myodes rutilus) took place in Fennoscandia just after end‐glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.  相似文献   

9.
The effects of Pleistocene glaciations on the genetic characteristics of the most austral conifer in the world, Pilgerodendron uviferum, were analysed with specific reference to the hypothesis that the species persisted locally in ice‐free areas in temperate South America. It was expected that genetic variation would decrease with latitude, given that ice fields were larger in southern Patagonia and thus refugia were probably located towards the northern distributional limit of the species as suggested by the fossil record. In addition, an increase in among‐population genetic divergence was expected with increasing distance to putative glacial refugia. We examined the relationship between location and within‐population variability indices of 20 Pilgerodendron populations derived from isozyme analyses. We analysed possible refugia hypotheses by the distribution of allele frequencies using multivariate discriminant analysis. The degree of genetic differentiation with geographical distance between all population pairs was investigated by Mantel tests. Results indicated that Pilgerodendron populations are highly monomorphic, probably reflecting past population bottlenecks and reduced gene flow. Southernmost populations tend to be the least genetically variable and were therefore probably more affected by glacial activity than northern ones. Populations located outside ice limits seem to have been isolated during the glacial period. The presence of centres of genetic diversity, together with the lack of a significant correlation between genetic and geographical distances and the absence of geographical patterns of allelic frequencies at most analysed alleles, may indicate that Pilgerodendron did not advance southward after the last glaciation from a unique northern refugium, but spread from several surviving populations in ice‐free areas in Patagonia instead.  相似文献   

10.
Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern ‘cryptic’ glacial refugium. Using genome‐wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little‐known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude‐related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high‐altitude and high‐latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow‐up studies of this emerging model of evolutionary biology.  相似文献   

11.
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

12.
We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other freshwater species with similar distribution patterns.  相似文献   

13.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

14.
Aim Climate change may cause loss of genetic diversity. Here we explore how a multidisciplinary approach can be used to infer effects of past climate change on species distribution and genetic diversity and also to predict loss of diversity due to future climate change. We use the arctic‐alpine plant Salix herbacea L. as a model. Location Europe, Greenland and eastern North America. Methods We analysed 399 samples from 41 populations for amplified fragment length polymorphism (AFLP) to identify current patterns of genetic structure and diversity and likely historical dispersal routes. Macrofossil records were compiled to infer past distribution, and species distribution models were used to predict the Last Glacial Maximum (LGM) and future distribution of climatically suitable areas. Results We found strong genetic differentiation between the populations from Europe/East Greenland and those from Canada/West Greenland, indicating a split probably predating the LGM. Much less differentiation was observed among the four genetic groups identified in Europe, and diversity was high in the Scandinavian as well as in southern alpine populations. Continuous distribution in Central Europe during the last glaciation was inferred based on the fossil records and distribution modelling. A 46–57% reduction in suitable areas was predicted in 2080 compared to present. However, mainly southern alpine populations may go extinct, causing a loss of about 5% of the genetic diversity in the species. Main conclusions From a continuous range in Central Europe during the last glaciation, northward colonization probably occurred as a broad front maintaining diversity as the climate warmed. This explains why potential extinction of southern populations by 2080 will cause a comparatively low loss of the genetic diversity in S. herbacea. For other species with different glacial histories, however, the expected climate‐change induced regional extinction may cause a more severe loss of genetic diversity. We conclude that our multidisciplinary approach may be a useful tool for assessing impact of climate change on loss of genetic diversity.  相似文献   

15.
In this work, patterns of geographical genetic diversity in Atlantic salmon Salmo salar were studied across the whole Atlantic Arc; whether these patterns (and thus genetic population structure) were affected by water temperatures was also evaluated. Salmo salar populations were characterized using microsatellite loci and then analysed with reference to ocean surface temperature data from across the region. Analysis showed the presence of a latitudinal cline of genetic variability (higher in northern areas) and water temperatures (sea surface temperatures) determining genetic population structure (the latter in combination with genetic drift in southern populations). Under the current global change scenario, northern areas of Europe would constitute refugia for diversity in the future. This is effectively the inverse of what appears to have happened in glacial refugia during the last glacial maximum. From this perspective, the still abundant and large northern populations S. salar should be considered as precious as the small almost relict southern ones and given appropriate protection. Careful management of the species, coordinated across countries and latitudes, is needed in order to avoid its extinction in Europe.  相似文献   

16.
A survey of allozyme diversity within and between populations of Silene acaulis from Spitsbergen, Norway, Iceland and Scotland, showed that populations from the high Arctic (Spitsbergen, > 76°N) contained high levels of diversity and were genetically similar to populations from more southern locations. Indirect measures of gene flow (Nm), calculated from Wrigh's F indicated that there had been extensive gene flow between Spitsbergen and some Norwegian populations. A restriction site analysis of chloroplast DNA (cpDNA) in S. acaulis revealed that all populations contained a single identical cpDNA haplotype, except one population from Norway which also contained a second haplotype. In contrast, five different cpDNA haplotypes were distinguished in a more limited survey of cpDNA variation in Saxifraga oppositifolia, with all five haplotypes present in one of two Spitsbergen populations surveyed. The contrasting cpDNA results for the two species suggest that whereas high-Arctic populations of Silene acaulis have most likely been derived from immigrants which arrived from the south after the last glacial period, high-Arctic populations of Saxifraga oppositifolia may be derived, in part, from ancient northern stocks which survived the last glaciation in high-Arctic refugia.  相似文献   

17.
It has been suggested that many arctic-alpine plant species have limited dispersal ability and cannot have arrived in Scandinavia and the arctic archipelago of Svalbard by long-distance dispersal after a total glaciation. It has therefore been proposed that such species must have survived the entire glaciation(s) in ice-free refugia in southern Norway, northern Norway and Svalbard. We investigated random amplified polymorphic DNA (RAPD) variation among 28 populations from Norway and Svalbard of one of these arctic-alpine 'short-distance dispersers', the selfing polyploid Saxifraga cespitosa . In an analysis of molecular variance ( AMOVA ), more variation was found among populations within the three postulated refugia regions (45%) than among these regions (25%). Spatial autocorrelation (Mantel) analyses showed that the genetic distance monotonously increased with increasing geographical distance. In UPGMA and PCO analyses, the populations from Norway and Svalbard formed a south–north cline that continued across the Barents Sea barrier. The results suggest that there has been recent dispersal among the three postulated refugia regions and thus that postglacial dispersal into these refugia regions from other distant areas also must represent a possibility. The observed geographical pattern of the genetic variation may have been established after expansion from different source areas outside the North European ice sheet and/or from different refugia areas 'within' the ice sheet, but it is probably not possible to distinguish among these alternatives. The results for S. cespitosa are consistent with a dynamic late- and postglacial scenario with extensive plant dispersal, and support the conclusion from our previous study of the outbreeding Saxifraga oppositifolia ; the hypothesis of glacial survival in Norway and/or Svalbard is superfluous.  相似文献   

18.
19.
Discordant phylogeographical patterns among species with similar distributions may not only denote specific biogeographical histories of different species, but also could represent stochastic variance of genealogies in applied genetic markers. A multilocus investigation representing different genomes can be used to address the latter concern, allowing robust inference to biogeographical history. In the present study, we conducted a multilocus phylogeographical analysis to re‐examine the genetic structuring of Phyllodoce nipponica, in which chloroplast (cp)DNA markers exhibited a discordant pattern compared to those of other alpine plants. The geographical structure of sequence variation at five nuclear loci was not consistent with that of cpDNA and showed differentiation between the northern and southern parts of the range of this species. Its demographic history inferred from the isolation‐with‐migration model suggests that the north–south divergence originated from Pleistocene vicariance. In addition, the demographic parameters showed a lack of chloroplast‐specific gene flow, suggesting that stochastic variance in genealogy resulted in the discordant geographical structure. Thus, P. nipponica probably experienced Pleistocene vicariance between its southern and northern range parts in concordance with other alpine plants in the Japanese archipelago. The findings of the present study demonstrates the importance of using a multilocus approach for inferring population dynamics, as well as for reconciling discordant phylogeographical patterns among species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 214–226.  相似文献   

20.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号