首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT.   Although breeding populations of Piping Plovers are well studied, their winter distribution is less clear. We studied the seasonal abundance of nonbreeding Piping Plovers ( Charadrius melodus ) during the winters of 2003–2004 and 2004–2005 on Little St. Simons Island (LSSI), Georgia. Our objectives were to determine the relative abundance of individuals from three breeding populations at LSSI, and identify possible differences among populations in arrival time, winter movements, or departure time. We observed up to 100 Piping Plovers during peak migration, and approximately 40 plovers wintered at LSSI. From July 2004 to May 2005, approximately 20% of the Great Lakes breeding population used LSSI. Plovers were not present at LSSI during June. All breeding populations of Piping Plovers had similar patterns of temporal occurrence on LSSI, suggesting no need for population-specific management plans at this site. Our results suggest that LSSI is among the most important wintering sites on the Atlantic coast for Piping Plovers, especially for individuals from the endangered Great Lakes population.  相似文献   

2.
Most of the known wintering areas of Piping Plovers (Charadrius melodus) are along the Atlantic and Gulf coasts of the United States and into Mexico, and in the Caribbean. However, 1066 threatened/endangered Piping Plovers were recently found wintering in The Bahamas, an area not previously known to be important for the species. Although representing about 27% of the birds counted during the 2011 International Piping Plover Winter Census, the location of their breeding site(s) was unknown. Thus, our objectives were to determine the location(s) of their breeding site(s) using molecular markers and by tracking banded individuals, identify spring and fall staging sites, and examine site fidelity and survival. We captured and color‐banded 57 birds in January and February 2010 in The Bahamas. Blood samples were also collected for genetic evaluation of the likely subspecies wintering in The Bahamas. Band re‐sightings and DNA analysis revealed that at least 95% of the Piping Plovers wintering in The Bahamas originated on the Atlantic coast of the United States and Canada. Re‐sightings of birds banded in The Bahamas spanned the breeding distribution of the species along the Atlantic coast from Newfoundland to North Carolina. Site fidelity to breeding and wintering sites was high (88–100%). Spring and fall staging sites were located along the Atlantic coast of the United States, with marked birds concentrating in the Carolinas. Our estimate of true survival for the marked birds was 0.71 (95% CI: 0.61–0.80). Our results indicate that more than one third of the Piping Plover population that breeds along the Atlantic coast winters in The Bahamas. By determining the importance of The Bahamas to the Atlantic subspecies of Piping Plovers, future conservation efforts for these populations can be better focused on where they are most needed.  相似文献   

3.
Yellow Warblers (Setophaga petechia) are abundant breeding birds in North America, but their migratory and non‐breeding biology remain poorly understood. Studies where genetic and isotopic techniques were used identified parallel migration systems and longitudinal segregation among eastern‐ and western‐breeding populations of Yellow Warblers in North America, but these techniques have low spatial resolution. During the 2015 breeding season, we tagged male Yellow Warblers breeding in Maine (= 10) and Wisconsin (= 10) with light‐level geolocators to elucidate fine‐scale migratory connectivity within the eastern haplotype of this species and determine fall migration timing, routes, and wintering locations. We recovered seven of 20 geolocators (35%), including four in Maine and three in Wisconsin. The mean duration of fall migration was 49 d with departure from breeding areas in late August and early September and arrival in wintering areas in mid‐October. Most individuals crossed the Gulf of Mexico to Central America before completing the final eastward leg of their migration to northern South America. Yellow Warblers breeding in Maine wintered in north‐central Colombia, west of those breeding in Wisconsin that wintered in Venezuela and the border region between Brazil, Colombia, and Venezuela. Our results provide an example of crosswise migration, where the more easterly breeding population wintered farther west than the more westerly breeding population (and vice versa), a seldom‐documented phenomenon in birds. Our results confirm earlier work demonstrating that the eastern haplotype of northern Yellow Warblers winters in northern South America, and provide novel information about migratory strategies, timing, and wintering locations of birds from two different populations.  相似文献   

4.
ABSTRACT To conserve threatened species, managers require predictions about the effects of natural and anthropogenic factors on population growth that in turn require accurate estimates of survival, birth, and dispersal rates, and their correlation with natural and anthropogenic factors. For Piping Plovers (Charadrius melodus), fledging rate is often more amenable to management than adult survival, and population models can be used to estimate the productivity (young produced per breeding female) necessary to maintain or increase populations for given levels of survival. We estimated true survival and site fidelity of adult and subadult (from fledging to second year) Piping Plovers breeding in Saskatchewan using mark‐resight data from 2002 to 2009. By estimating true survival rather than apparent survival (which is confounded with permanent emigration), we were able to provide more accurate projections of population trends. Average adult and subadult survival rates during our study were 0.80 and 0.57, respectively. Adult survival declined over time, possibly due in part to the loss of one breeding site to flooding. Average adult and subadult site fidelity were 0.86 and 0.46, respectively. Adult site fidelity declined during our study at two study sites, most strongly at the flooded site. Male and female Piping Plovers had similar survival rates, but males had greater site fidelity than females in some years. Based on our survival estimates, productivity needed for a stationary population was 0.75, a benchmark used for plover management on the Atlantic Coast, but not previously estimated for Prairie Canada. In stochastic simulations incorporating literature‐based variation in survival rates, productivity needed for a stationary population increased to 0.86, still lower than that previously estimated for western populations. Mean productivity for our study sites ranged from 0.87 to 0.96 fledged young per pair. Our results suggest that fledging rates of Piping Plovers in Saskatchewan were sufficient to ensure a stationary or increasing population during our study period. However, large‐scale habitat changes such as drought or anthropogenic flooding may lead to dispersal of breeding adults and possibly mortality that will increase the fledging rate needed for a stationary population.  相似文献   

5.
Understanding the migratory movements and habitats used during the annual cycle of migrants is essential to developing comprehensive conservation strategies. Mountain Plovers (Charadrius montanus) are short‐distance migrants listed as a species of conservation concern in many states across their range, however, little is known about their migratory ecology. We used data from geolocators to describe the first direct estimates of migratory routes and migration schedules for Mountain Plovers breeding in Phillips County, Montana. We attached geolocators to 36 Mountain Plovers in 2010–2012 and recovered five (13.9%; three males and two females). Four of five Mountain Plovers in our study overwintered in Texas, and one overwintered in Arizona. Migration routes were relatively linear, with the exception of one plover that moved south and then west to reach its winter range in Arizona. Two plovers left breeding areas in mid‐July and the other three left in late September. All plovers used stopover sites near either eastern Colorado or southwest Kansas. Plovers that departed earlier used stopover sites for ~100 d, whereas those that left later used them for ~35 d. All plovers in our study arrived in wintering areas by early November and departed by late March. Our results suggest that eastern Colorado and southwest Kansas are important stopover areas during migration, and highlight the need to better understand how these locations support non‐breeding plovers.  相似文献   

6.
Ecosystems around the world are connected by seasonal migration. The migrant animals themselves are influenced by migratory connectivity through effects on the individual and the population level. Measuring migratory connectivity is notoriously difficult due to the simple requirement of data conveying information about the nonbreeding distribution of many individuals from several breeding populations. Explicit integration of data derived from different methods increases the precision and the reliability of parameter estimates. We combine ring‐reencounter, stable isotope, and blood parasite data of Barn Swallows Hirundo rustica in a single integrated model to estimate migratory connectivity for three large scale breeding populations across a latitudinal gradient from Central Europe to Scandinavia. To this end, we integrated a non‐Markovian multistate mark‐recovery model for the ring‐reencounter data with normal and binomial mixture models for the stable isotope and parasite data. The integration of different data sources within a mark‐recapture modeling framework enables the most precise quantification of migratory connectivity on the given broad spatial scale. The results show that northern‐breeding populations and Southern Africa as well as southern‐breeding populations and Western–Central Africa are more strongly connected through Barn Swallow migration than central European breeding populations with any of the African wintering areas. The nonbreeding distribution of Barn Swallows from central European breeding populations seems to be a mixture of those populations breeding further north and south, indicating a migratory divide.  相似文献   

7.
Detailed knowledge of migratory connectivity can facilitate effective conservation of Neotropical migrants by helping biologists understand where and when populations may be most limited. We studied the migratory behavior and non‐breeding distribution of two closely related species of conservation concern, the Golden‐winged Warbler (Vermivora chrysoptera) and Blue‐winged Warbler (Vermivora cyanoptera). Although both species have undergone dynamic range shifts and population changes attributed to habitat loss and social interactions promoting competition and hybridization, full life‐cycle conservation planning has been limited by a lack of information about their non‐breeding ecology. Because recent work has demonstrated that the two species are nearly identical genetically, we predicted that individuals from a single breeding population would have similar migratory timing and overwintering locations. In 2015, we placed light‐level geolocators on 25 males of both species and hybrids in an area of breeding sympatry at the Fort Drum Military Installation in Jefferson and Lewis counties, New York. Despite extreme genetic similarity, non‐breeding locations and duration of migration differed among genotypes. Golden‐winged Warblers (N = 2) overwintered > 1900 km southeast of the nearest Blue‐winged Warbler (N = 3) and spent nearly twice as many days in migration; hybrids (N = 2) had intermediate wintering distributions and migratory timing. Spring migration departure dates were staggered based on distance from the breeding area, and all birds arrived at the breeding site within 8 days of each other. Our results show that Golden‐winged Warblers and Blue‐winged Warblers in our study area retain species‐specific non‐breeding locations despite extreme genetic similarity, and suggest that non‐breeding locations and migratory timing vary along a genetic gradient. If the migratory period is limiting for these species, our results also suggest that Golden‐winged Warblers in our study population may be more vulnerable to population decline than Blue‐winged Warblers because they spend almost twice as many days migrating.  相似文献   

8.
9.
Given the high productivity of Interior Least Terns (Sternula antillarum athalassos) and Piping Plovers (Charadrius melodus) on constructed off‐channel nesting sites along the central Platte River in Nebraska, USA, and the possibility of creating similar habitats at other locations in their breeding range, understanding how these species use off‐channel nesting habitats is important. We used data collected along the central Platte River in Nebraska, USA, over a 15‐year period (2001–2015), and a discrete‐choice modeling framework to assess the effects of physical site attributes and inter‐ and intraspecific associations on off‐channel nest‐site selection by Interior Least Terns and Piping Plovers. We found that Piping Plovers avoided nesting near each other, whereas colonial Interior Least Terns selected nest sites near those of conspecifics. In addition, the relative probability of use for both species was maximized when distance to the nearest predator perch was ≥ 150 m and elevation above the waterline was ≥ 3 m. Probability of use for nesting by Interior Least Terns increased as distance to water increased, whereas the probability of use by Piping Plovers was maximized when distance to water was ~50 m. Our results suggest that important features of constructed, off‐channel nesting sites for both species should include no potential predator perches within 150 m of nesting habitat and nesting areas at least 3 m above the waterline. Efficient site designs for Interior Least Terns would be circular, maximizing the area of nesting habitat away from the shoreline, whereas an effective site design for Piping Plovers would be more linear, maximizing the area of nesting habitat near the waterline. An efficient site design for both species would be lobate, incorporating centralized nesting habitat for Interior Least Terns and increased access to foraging areas for nesting and brood‐rearing Piping Plovers.  相似文献   

10.
Implicit assumptions for most mark‐recapture studies are that individuals do not lose their markers and all observed markers are correctly recorded. If these assumptions are violated, e.g., due to loss or extreme wear of markers, estimates of population size and vital rates will be biased. Double‐marking experiments have been widely used to estimate rates of marker loss and adjust for associated bias, and we extended this approach to estimate rates of recording errors. We double‐marked 309 Piping Plovers (Charadrius melodus) with unique combinations of color bands and alphanumeric flags and used multi‐state mark recapture models to estimate the frequency with which plovers were misidentified. Observers were twice as likely to read and report an invalid color‐band combination (2.4% of the time) as an invalid alphanumeric code (1.0%). Observers failed to read matching band combinations or alphanumeric flag codes 4.5% of the time. Unlike previous band resighting studies, use of two resightable markers allowed us to identify when resighting errors resulted in reports of combinations or codes that were valid, but still incorrect; our results suggest this may be a largely unappreciated problem in mark‐resight studies. Field‐readable alphanumeric flags offer a promising auxiliary marker for identifying and potentially adjusting for false‐positive resighting errors that may otherwise bias demographic estimates.  相似文献   

11.
Spatiotemporal variation in survival may be an important driver of multi‐population dynamics in many wild animal species, yet few scientific studies have addressed this issue, primarily due to a lack of sufficiently comprehensive and detailed datasets. Synchrony in survival rates among different, often distant, subpopulations appears to be common, caused by spatially correlated environmental conditions or by movement of animals from different sites such that their ranges overlap. Many seabird populations are effectively isolated during the breeding season because colonies are widely separated, but over the winter, birds disperse widely and there may be much mixing between different populations. The non‐breeding season is also the period of main mortality for seabirds. Using mark–recapture and ring‐recovery data, we tested for spatial, temporal and age‐related correlations in survival of Common Guillemots Uria aalge among three widely separated Scottish colonies that have varying overlap in their overwintering distributions. Survival was highly correlated over time for colonies/age‐classes sharing wintering areas and, except in 2004, was essentially uncorrelated for those with separate wintering areas. These results strongly suggest that one or more aspects of the winter environment are responsible for spatiotemporal variation in survival of British Guillemots, and provide insight into the factors driving large‐scale population dynamics of the species.  相似文献   

12.
In migrant birds, survival estimates for the different life‐history stages between fledging and first breeding are scarce. First‐year survival is shown to be strongly reduced compared with annual survival of adult birds. However, it remains unclear whether the main bottleneck in juvenile long‐distant migrants occurs in the postfledging period within the breeding ranges or en route. Quantifying survival rates during different life‐history stages and during different periods of the migration cycle is crucial to understand forces driving the evolution of optimal life histories in migrant birds. Here, we estimate survival rates of adult and juvenile barn swallows (Hirundo rustica L.) in the breeding and nonbreeding areas using a population model integrating survival estimates in the breeding ranges based on a large radio‐telemetry data set and published estimates of demographic parameters from large‐scale population‐monitoring projects across Switzerland. Input parameters included the country‐wide population trend, annual productivity estimates of the double‐brooded species, and year‐to‐year survival corrected for breeding dispersal. Juvenile survival in the 3‐week postfledging period was low (S = 0.32; SE = 0.05), whereas in the rest of the annual cycle survival estimates of adults and juveniles were similarly high (S > 0.957). Thus, the postfledging period was the main survival bottleneck, revealing the striking result that nonbreeding period mortality (including migration) is not higher for juveniles than for adult birds. Therefore, focusing future research on sources of variation in postfledging mortality can provide new insights into determinants of population dynamics and life‐history evolution of migrant birds.  相似文献   

13.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

14.
David Norman  Will J. Peach 《Ibis》2013,155(2):284-296
Long‐term studies can provide powerful insights into the relative importance of different demographic and environmental factors determining avian population dynamics. Here we use 23 years of capture–mark–recapture data (1981–2003) to estimate recruitment and survival rates for a Sand Martin Riparia riparia population in Cheshire, NW England. Inter‐annual variation in recruitment and adult survival was positively related to rainfall in the sub‐Saharan wintering grounds, but unrelated to weather conditions on the breeding grounds. After allowing for the effects of African rainfall, both demographic rates were negatively density‐dependent: adult survival was related to the size of the western European Sand Martin population (probably reflecting competition for resources in the shared wintering grounds) while recruitment was related to the size of the local study population in Cheshire (potentially reflecting competition for nesting sites or food). Local population size was more sensitive to variation in adult survival than to variation in recruitment, and an increase in population size after 1995 was driven mainly by the impact of more favourable conditions in the African wintering grounds on survival rates of adults. Overwinter survival in this long‐distance Palaearctic migrant is determined partly by the amount of suitable wetland foraging habitat in the sub‐Saharan wintering grounds (which is limited by the extent of summer rainfall) and partly by the number of birds exploiting that habitat.  相似文献   

15.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

16.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

17.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

18.
Understanding non‐breeding season movements and identifying wintering areas of different populations of migratory birds is important for establishing patterns of migratory connectivity over the annual cycle. We analyzed archival solar geolocation (N = 5) and global positioning data (= 1) to investigate migration routes, stopover sites, and wintering areas of a western‐most breeding population of Veeries (Catharus fuscescens) in the Pemberton Valley, British Columbia, Canada. Geolocation data were analyzed using a Bayesian state‐space model to improve likely position estimates. We compared our results with those from a Veery population located ~250 km east across a mountain chain in the Okanagan Valley, British Columbia, and with an eastern population in Delaware, U.S.A. Migrating Veeries from the Pemberton Valley used an eastern trajectory through the Rocky Mountains to the Great Plains to join a central flyway during fall and spring migration, a route similar to that used by Veeries breeding in the Okanagan Valley. However, wintering destinations of Pemberton Valley birds were more varied, with inter‐individual wintering distances ~1000 km greater than birds from the Okanagan Valley population and ~500 km from the previously known winter range of Veeries. The observed eastern migration path likely follows an ancestral route that evolved following the most recent glacial retreat. Consistent with patterns observed from the Okanagan and Delaware populations, Veeries from the Pemberton Valley undertook an intra‐tropical migration on the wintering grounds, but this winter movement differed from those of previously studied populations. Such winter movements may thus be idiosyncratic or show coarse population associations. Intra‐wintering‐ground movements likely occur either in response to seasonal changes in habitat suitability or as a means of optimizing pre‐migratory fueling prior to long‐distance spring movements to North America.  相似文献   

19.
Data from 3659 waders of 23 species live-trapped in the years 1971-73 on the Atlantic coast of Morocco during the period of autumn moult and migration are analysed to estimate duration and timing of primary moult. Common Sandpiper was the only species to moult primaries in its first autumn (unless published ageing criteria are incorrect). Several species showed a low incidence of arrested primary moult and a higher incidence was observed in Ringed, Kentish and Grey Plovers. This is discussed in relation to breeding and migration. Similar rates of primary feather replacement relative to specific moult duration were observed in all species for which information was available. Comparisons between species and with published studies showed that variations in rate of moulting between species and between different geographical populations of the same species were largely due to differences in feather growth rate rather than in the numbers of primaries concurrently in growth. Variations in rate between individuals of the same population were achieved, at least in the first part of moult, by differences in feather dropping rate resulting in differences in the numbers of primaries growing concurrently. The timing and duration of moult in different populations and differences between breeding and non-breeding components were closely related to the requirements of other annual cycle activities, notably breeding and migration. Non-breeding birds summering in Morocco had started moult early. Locally breeding birds had an early start to a fairly slow moult which overlapped with breeding and which in some cases passed through an arrested stage. Birds breeding in cold temperate and arctic regions and wintering in Morocco moulted in a short time soon after arrival. In some cases, notably in Ringed Plovers, birds had commenced moulting on the breeding grounds and arrested moult during migration. Most Redshank and possibly Dunlin migrated in active wing moult. The fastest primary moult was achieved by high arctic breeding birds, Curlew Sandpiper and possibly Little Stint, which stopped to moult in Morocco before moving on to wintering areas further south. This situation is contrasted with that of populations of these two and other species wintering in the southern hemisphere where moult occurs over an extended period during the northern winter.  相似文献   

20.
The post‐breeding movements of three northeast Atlantic populations (north Greenland, Svalbard and Franz Josef Land) of the ivory gull Pagophila eburnea, a threatened high‐Arctic sea‐ice specialist, were studied between July and December 2007 using 31 satellite transmitters. After leaving their breeding grounds, all birds first dispersed eastward in August–September, to an area extending from the Fram Strait to the northwestern Laptev Sea (off Severnaya Zemlya). Most returned along the same flyway in October–November, hence describing a loop migration before moving south, off east Greenland. Wintering grounds were reached in December, in southeast Greenland and along the Labrador Sea ice‐edge, where Canadian birds also overwinter. One to two birds from each population however continued eastwards towards a third wintering area in the Bering Strait region, hence demonstrating a bi‐directional migration pattern for the populations and elucidating the origin of the birds found in the north Pacific during winter time. Overall, all birds breeding in the northeast Atlantic region used the same flyways, had similar rates of travel, and showed a peak in migratory activity in November. Though the total length of the main flyway, to the Labrador Sea, is only and at most 7500 km on a straight line, the mean total distance travelled by Greenland birds between July and December was 50 000 km when estimated from hourly rates of travel. Our study presents the first comprehensive and complete picture for the post‐breeding movements of the different ivory gull populations breeding in the northeast Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号