首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Wind tunnels, in which birds fly against an artificially generated air flow, have since long been used to evaluate aerodynamic properties of steady bird flight. A new generation of wind tunnels has also allowed the many processes associated with migratory flights to be studied in captivity. We review how wind tunnel studies of aerodynamics and migratory performance together have helped advancing our understanding of bird migration. Current migration theory is based on the power‐speed relationship of flight as well as flight range equations, both of which can be evaluated using birds flying in wind tunnels. In addition, and depending on wind tunnel properties, performance during gliding and climbing flight, and effects of air pressure, humidity and turbulence on bird flight has been measured. Long‐distance migrant species have been flown repeatedly for up to 16 h non‐stop, allowing detailed studies of the energy expenditure, fuel composition, protein turnover, water balance, immunocompetence and stress associated with sustained migratory flights. In addition, wind tunnels allow the fuelling periods between migratory flights to be studied from new angles. We end our review by suggesting several important topics for future wind tunnel studies, ranging from on of the key questions remaining, the efficiency at which chemical power in converted to mechanical power, to new useful avenues, such as improving and calibrating the techniques used for tracking of individual birds in the wild.  相似文献   

2.
Collisions with wind turbines are an increasing conservation concern for migratory birds that already face many threats. Existing collision‐risk models take into account parameters of wind turbines and bird flight behavior to estimate collision probability and mortality rates. Two behavioral characteristics these models require are the proportion of birds flying at the height of the rotor swept‐zone and the flight speed of birds passing through the rotor swept‐zone. In recent studies, investigators have measured flight height and flight speed of migrating birds using fixed‐beam radar and thermal imaging. These techniques work well for fixed areas where migrants commonly pass over, but they cannot readily provide species‐specific information. We measured flight heights of a nesting shorebird, the federally threatened Piping Plover (Charadrius melodus), using optical range finding and measured flight speed using videography. Several single‐turbine wind projects have been proposed for the Atlantic coast of the United States where they may pose a potential threat to these plovers. We studied Piping Plovers in New Jersey and Massachusetts during the breeding seasons of 2012 and 2013. Measured flight heights ranged from 0.7 to 10.5 m with a mean of 2.6 m (N = 19). Concurrent visually estimated flight heights were all within 2 m of measured heights and most within 1 m. In separate surveys, average visually estimated flight height was 2.6 m (N = 1674) and ranged from 0.25 m to 40 m. Average calculated flight speed was 9.30 m/s (N = 17). Optical range finding was challenging, but provided a useful way to calibrate visual estimates where frames of reference were lacking in the environment. Our techniques provide comparatively inexpensive, replicable procedures for estimating turbine collision‐risk parameters where the focus is on discrete nesting areas of specific species where birds follow predictable flight paths.  相似文献   

3.
Birds in flight are proposed to adjust their body orientation (heading) and airspeed to wind conditions adaptively according to time and energy constraints. Airspeeds in goal‐directed flight are predicted to approach or exceed maximum‐range airspeeds, which minimize transport costs (energy expenditure per unit distance) and should increase in headwinds and crosswinds. Diagnosis of airspeed adjustment is however obscured by uncertainty regarding birds' goal‐directions, transport costs, interrelations with orientation strategy and the attainability of predicted behaviour. To address these issues, we tested whether gulls minimized transport costs through adjustment of airspeed and heading to wind conditions during extended inbound flight over water (180–360 km) to their breeding colony, and introduce a methodology to assess transport (energy) efficiency given wind conditions. Airspeeds, heading, flight mode and energy expenditure were estimated using GPS tracking, accelerometer and wind data. Predicted flight was determined by simulating each trip according to maximum‐range airspeeds and various orientation strategies. Gulls employed primarily flapping flight (93%), and negotiated crosswinds flexibly to exploit both high altitude tailwinds and coastal soaring opportunities. We demonstrate that predicted airspeeds in heavy crosswinds depend strongly on orientation strategy and presumed preferred direction. Measured airspeeds increased with headwind and crosswind similarly to maximum‐range airspeeds based on full compensation for wind drift, yet remained ~ 30% lower than predicted by all strategies, resulting in slower and 30–35% costlier flight. Interestingly, more energy could be saved through adjustment of airspeed (median 40%) than via orientation strategy (median 4%). Therefore, despite remarkably flexible reaction to wind at sea, these gulls evidently minimized neither time nor energy expenditure. However, airspeeds were possibly over‐predicted by current aerodynamic models. This study emphasizes the importance of accounting for orientation strategy when assessing airspeed adjustments to wind and indicates that either the cost or adaptive ‘currency’ of extended flight among gulls may require revision.  相似文献   

4.
The use of miniaturized video cameras to study the at‐sea behavior of flying seabirds has increased in recent years. These cameras allow researchers to record several behaviors that were not previously possible to observe. However, video recorders produce large amounts of data and videos can often be time‐consuming to analyze. We present a new technique using open‐source software to extract bank angles from bird‐borne video footage. Bank angle is a key facet of dynamic soaring, which allows albatrosses and petrels to efficiently search vast areas of ocean for food. Miniaturized video cameras were deployed on 28 Wandering Albatrosses (Diomedea exulans) on Marion Island (one of the two Prince Edward Islands) from 2016 to 2018. The OpenCV library for the Python programming language was used to extract the angle of the horizon relative to the bird’s body (= bank angle) from footage when the birds were flying using a series of steps focused on edge detection. The extracted angles were not significantly different from angles measured manually by three independent observers, thus being a valid method to measure bank angles. Image quality, high wind speeds, and sunlight all influenced the accuracy of angle estimates, but post‐processing eliminated most of these errors. Birds flew most often with cross‐winds (58%) and tailwinds (39%), resulting in skewed distributions of bank angles when birds turned into the wind more often. Higher wind speeds resulted in extreme bank angles (maximum observed was 94°). We present a novel method for measuring postural data from seabirds that can be used to describe the fine‐scale movements of the dynamic‐soaring cycle. Birds appeared to alter their bank angle in response to varying wind conditions to counter wind drift associated with the prevailing westerly winds in the Southern Ocean. These data, in combination with fine‐scale positional data, may lead to new insights into dynamic‐soaring flight.  相似文献   

5.
The migratory patterns of birds have been the focus of ecologists for millennia. What behavioural traits underlie these remarkably consistent movements? Addressing this question is central to advancing our understanding of migratory flight strategies and requires the integration of information across levels of biological organisation, e.g. species to communities. Here, we combine species‐specific observations from the eBird citizen‐science database with observations aggregated from weather surveillance radars during spring migration in central North America. Our results confirm a core prediction of migration theory at an unprecedented national scale: body mass predicts variation in flight strategies across latitudes, with larger‐bodied species flying faster and compensating more for wind drift. We also find evidence that migrants travelling northward earlier in the spring increasingly compensate for wind drift at higher latitudes. This integration of information across biological scales provides new insight into patterns and determinants of broad‐scale flight strategies of migratory birds.  相似文献   

6.
During a radar study of autumn migrating waterfowl Denmark, individual flight trajectories of bird flocks were seen to show zigzag-like patterns, rather than exact straight lines. An analysis of these small-scale changes in flight directions, which are too small to be detected by satellite telemetry, showed that geese and common eiders Somateria m. mollissima were flying on average 0.7% and 1.6% longer distances, respectively, than if they would have flown along exact straight lines. Thus, it is concluded that the flight paths are remarkably similar to straight lines. A multivariate regression analysis suggested cross wind as a factor increasing flight distance, and hence, the small-scale changes in flight directions could in part be a result of birds trying to compensate for wind drift.  相似文献   

7.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

8.
ABSTRACT.   Raptors and other large birds in soaring flight take advantage of upward drafts of air called thermals to maintain altitude with minimal flapping. I used a Doppler light detection and ranging (lidar) system to characterize a thermal in which raptors were soaring. Doppler lidar allows imaging of wind fields to reveal the structure of updrafts and downdrafts in a thermal. The thermal I monitored was in the form of a horizontal convective roll created at a transition from clear sky to partly cloudy sky, and gave both lift and lateral motion to the soaring birds. The thermal was 700 m high with a vertical wind speed that peaked at 3 m/s, so raptors could have soared to and maintained that altitude as the horizontal wind moved the thermal. My results suggest that imaging wind fields with Doppler lidar can be a useful tool for studying thermals and how they are used by soaring birds. An effective combination for further study of bird flight interaction with wind phenomena would be to add lidar measurements to an established means of tracking bird flight by radio or GPS transmitters, aircraft tracking, or radar.  相似文献   

9.
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.  相似文献   

10.
Flight dynamics theories are influenced by two major topics: how birds adapt their flight to cope with heterogeneous habitats, and whether birds plan to use the wind field or simply experience it. The aim of this study was to understand the flight dynamics of free-flying Cory’s shearwaters in relation to the wind characteristics on the coastal upwelling region of continental Portugal. We deployed recently miniaturised devices—global positioning system loggers to collect precise and detailed information on birds’ positions and motions. Prevalent winds were blowing from the north-east and adults used those winds by adjusting their flight directions mainly towards north-west and south-west, flying with cross and tail winds, respectively, and avoiding head winds. This is confirmation that Cory’s shearwaters use a shear soaring flying strategy while exploiting the environment for food: adults foraged mainly with cross winds and their ground speed was not constant during all foraging trips as it changed dynamically as a result of the ocean surface shear winds. During travelling phases, ground speed was strongly influenced by the position of the bird with regard to the wind direction, as ground speed increased significantly with increasing tail wind component (TWC) values. Adults appear to choose foraging directions to exploit ambient wind, in order to improve shear soaring efficiency (cross winding) and exploit diurnal changes in tail wind strength to maximise commuting efficiency. We report, for the first time, precise ground speed values (GPS-derived data) and computed actual flight speed values (using TWC analysis) for Cory’s shearwater.  相似文献   

11.
The development of the mechanical and aerodynamical theory of bird flight has greatly stimulated research at widely different levels in the field of bird movement. Recent work has shown that the drag of bird bodies is less than was previously assumed. Furthermore, the structure and circulation of wingtip vortices in the wake of flying birds have been revealed, with implications for estimating flight performance on the basis of vortex theory. Predictions about optimal speed and flight behaviour have been successfully tested by field studies using optical and radar registration. Flight theory also allows predictions about optimal fuel deposition rules for migrating birds. Research about bird flight, with the dynamic interplay between theoretical development and empirical work in biophysics, physiology and ecology, represents a fine example of a highly successful use of the optimality approach in biology.  相似文献   

12.
Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.  相似文献   

13.
Many species of birds that normally migrate during the night have been observed engaging in so‐called morning flights during the early morning. The results of previous studies have supported the hypothesis that one function of morning flights is to compensate for wind drift that birds experienced during the night. Our objective was to further explore this hypothesis in a unique geographic context. We determined the orientation of morning flights along the southern shore of Lake Erie's western basin during the spring migrations of 2016 and 2017. This orientation was then compared to the observed orientation of nocturnal migration. Additionally, the orientation of the birds engaged in morning flights following nights with drifting winds was compared to that of birds following nights with non‐drifting winds. The morning flights of most birds at our observation site were oriented to the west‐northwest, following the southern coast of Lake Erie. Given that nocturnal migration was oriented generally east of north, the orientation of morning flight necessarily reflected compensation for accumulated, seasonal wind drift resulting from prevailingly westerly winds. However, the orientation of morning flights was similar following nights with drifting and non‐drifting winds, suggesting that birds on any given morning were not necessarily re‐orienting as an immediate response to drift that occurred the previous night. Given the topographical characteristics of our observation area, the west‐northwest movement of birds in our study is likely best explained as a more complex interaction that could include some combination of compensation for wind drift, a search for suitable stopover habitat, flying in a direction that minimizes any loss in progressing northward toward the migratory goal, and avoidance of a lake crossing.  相似文献   

14.
Optimal use of wind by migrating birds: combined drift and overcompensation   总被引:1,自引:0,他引:1  
Migrating birds may save flying time by allowing themselves to be partially drifted by strong winds at high altitude and correcting for the displacement at low altitude under relatively weaker winds. This behaviour will be favourable with strong upper winds and with wind direction approx. 30 ° to 90 ° in relation to the goal direction (following side winds). Radar observations of drift in high altitude bird migration and visual records of low altitude overcompensation are compatible with the optimal flight behaviour of migrants at high and low altitude, respectively, as predicted from this hypothesis.  相似文献   

15.
Bioacoustic localization of bird vocalizations provides unattended observations of the location of calling individuals in many field applications. While this technique has been successful in monitoring terrestrial distributions of calling birds, no published study has applied these methods to migrating birds in flight. The value of nocturnal flight call recordings can increase with the addition of three‐dimensional position retrievals, which can be achieved with adjustments to existing localization techniques. Using the time difference of arrival method, we have developed a proof‐of‐concept acoustic microphone array that allows the three‐dimensional positioning of calls within the airspace. Our array consists of six microphones, mounted in pairs at the top and bottom of three 10‐m poles, arranged in an equilateral triangle with sides of 20 m. The microphone array was designed using readily available components and costs less than $2,000 USD to build and deploy. We validate this technique using a kite‐lofted GPS and speaker package, and obtain 60.1% of vertical retrievals within the accuracy of the GPS measurements (±5 m) and 80.4% of vertical retrievals within ±10 m. The mean Euclidian distance between the acoustic retrievals of flight calls and the GPS truth was 9.6 m. Identification and localization of nocturnal flight calls have the potential to provide species‐specific spatial characterizations of bird migration within the airspace. Even with the inexpensive equipment used in this trial, low‐altitude applications such as surveillance around wind farms or oil platforms can benefit from the three‐dimensional retrievals provided by this technique.  相似文献   

16.
E. Eliassen 《Ibis》1963,105(2):234-237
The physiology of birds in flight is discussed in relation to (a) energy metabolism; (b) heat regulation, including the importance of the ventral part of the wing and its temperature, measured in a bird gliding in a specially constructed wind tunnel; and (c) cardio-vascular responses, measured in flying birds by telemetric methods.  相似文献   

17.
HIROYOSHI KOHNO  KEN YODA 《Ibis》2011,153(3):611-615
The post‐fledging dependence period is extremely important because it allows young birds the opportunity to develop behavioural skills required for later life. We raised 12 hatchling Brown Boobies Sula leucogaster and attached a miniaturized GPS logger to each bird to examine how flight improves after fledging. The Boobies made daily trips and increased the maximum distance, total distance travelled each day, trip duration and flight speed. Young Boobies seemed to gradually acquire flight skills towards independence.  相似文献   

18.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

19.
ALBATROSSES DO SOMETHING THAT NO OTHER BIRDS ARE ABLE TO DO: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.  相似文献   

20.
SYNOPSIS. Some birds can fly for more than 1000 kilometers withoutfeeding. Are these distances compatible with the fuel reservesand the power requirements that flying birds are thought tohave? The fuel for flight is primarily fat, which can make up50% of the total body mass of a bird prior to a long distanceflight. As the bird uses up fuel during the flight and becomeslighter, the power requirements of flight probably decrease.However, a constant power requirement can be assumed throughoutthe flight without introducing serious errors into the estimateof maximum flight distance at a given flight speed. Variousmethods that have been used to estimate the power requirementsof flight are reviewed. Estimates based on indirect calorimetryindicate that the maximum flight distances of birds, when agiven proportion of body mass is used as fuel, are directlyproportional to body mass raised to the 0.227 power. Calculatedvalues of range suggest that birds have small margins of safelyin long, over-water flights unless they are aided by winds orvertical air currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号