首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
Hummingbirds, with their impressive flight ability and competitive aerial contests, make ideal candidates for applying a mechanistic approach to studying community structure. Because flight costs are influenced by abiotic factors that change systematically with altitude, elevational gradients provide natural experiments for hummingbird flight ecology. Prior attempts relied on wing disc loading (WDL) as a morphological surrogate for flight performance, but recent analyses indicate this variable does not influence either territorial behavior or competitive ability. Aerodynamic power, by contrast, can be derived from direct measurements of performance and, like WDL, declines across elevations. Here, I demonstrate for a diverse community of Andean hummingbirds that burst aerodynamic power is associated with territorial behavior. Along a second elevational gradient in Colorado, I tested for correlated changes in aerodynamic power and competitive ability in two territorial hummingbirds. This behavioral analysis revealed that short-winged Selasphorus rufus males are dominant over long-winged Selasphorus platycercus males at low elevations but that the roles are reversed at higher elevations. Several lines of evidence support the hypothesis that the burst rather than sustained aerodynamic performance mediates competitive ability at high elevation. A minimum value for burst power may be required for successful competition, but other maneuverability features gain importance when all competitors have sufficient muscle power, as occurs at low elevations.  相似文献   

2.
Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (~0.3 kg) and small birds with rounded wings do not use intermittent glides.  相似文献   

3.
ABSTRACT.   Territorial behavior of Broad-tailed ( Selasphorous platycercus ) and Rufous ( Selasphorous rufus ) hummingbirds in Colorado was measured at sites with feeders containing10%, 20%, and 30% sucrose solutions, respectively. The presence or absence of territory holders, number of intruders, and intensity of defense were measured at the three levels of energy availability. Migrating Rufous Hummingbirds displaced Broad-tailed Hummingbirds from territories they had defended during the breeding season; Broad-tailed Hummingbirds then defended only lower quality sites. Both Broad-tailed and Rufous hummingbirds employed more energetically expensive behaviors when defending high quality sites, with longer chases more often supplemented with chip calls and hovering. Other investigators have suggested that chip calls and hovering are precursors to a chase. However, I found that chasing was the default response to the presence of an intruder. Chip calls and hovering were added to intensify a chase. In the few cases where chip calls were uttered or hovering occurred without a chase, Rufous Hummingbirds were more likely to exhibit this behavior than Broad-tailed Hummingbirds.  相似文献   

4.
Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight.  相似文献   

5.
The foraging behaviour of Australian honeyeaters is reviewed in terms of diet, foraging selectivity, foraging flight mode, quality and quantity of nectar encountered per flower, flower densities encountered and effect of predation. At the same time comparisons are made between honeyeaters and hummingbirds. These two groups of birds are superficially similar. Both feed on nectar and insects. Both tend to have long curved bills and tongues adapted for removal of nectar from flowers. Both tend to feed at long, red flowers. However, on close inspection, honeyeaters and hummingbirds are quite dissimilar. For example, many honeyeaters include fruit in their diets. Hummingbirds almost never eat fruit. Honeyeaters appear to be considerably less nectarivorous and more insectivorous than hummingbirds. Honeyeaters are, for the most part, larger than hummingbirds and they usually perch while feeding whereas hummingbirds usually hover. Honeyeaters but not hummingbirds often flock while feeding. Predation appears to be considerably more important for honeyeaters than for hummingbirds. Territorial defense of flowers seems common in hummingbirds but uncommon in honeyeaters. These differences are discussed in detail and explanations are offered for them wherever possible.  相似文献   

6.
Hovering and fast forward flapping represent two strenuous types of flight that differ in aerodynamic power requirement. Maximal capabilities of ruby-throated hummingbirds (Archilochus colubris) in hovering and forward flight were compared under varying body mass and wing area. The capability to hover in low-density gas mixtures was adversely affected by body mass, whereas the capability to fly in a wind tunnel did not show any adverse mass effect. Molting birds that lost primary flight feathers and reduced wing area also displayed mass loss and loss of aerodynamic power and flight speed. This suggests that maximal flight speed is insensitive to short-term perturbations of body mass but that molting is stressful and reduces the birds' speed and capacity for chase and escape. Hummingbirds' flight behavior in confined space was also investigated. Birds reduced their speeds flying through a narrow tube to approximately one-fifth of that in the wind tunnel and did not display differences under varying body mass and wing area. Hence, performance in the flight tube was submaximal and did not correlate with performance variation in the wind tunnel. For ruby-throated hummingbirds, both maximal mass-specific aerodynamic power derived from hovering performance in low-density air media and maximal flight velocity measured in the wind tunnel were invariant with body mass.  相似文献   

7.
Hummingbirds are specialized hoverers for which the vortex wake has been described as a series of single vortex rings shed primarily during the downstroke. Recent findings in bats and birds, as well as in a recent study on Anna''s hummingbirds, suggest that each wing may shed a discrete vortex ring, yielding a bilaterally paired wake. Here, we describe the presence of two discrete rings in the wake of hovering Anna''s hummingbirds, and also infer force production through a wingbeat with contributions to weight support. Using flow visualization, we found separate vortices at the tip and root of each wing, with 15% stronger circulation at the wingtip than at the root during the downstroke. The upstroke wake is more complex, with near-continuous shedding of vorticity, and circulation of approximately equal magnitude at tip and root. Force estimates suggest that the downstroke contributes 66% of required weight support, whereas the upstroke generates 35%. We also identified a secondary vortex structure yielding 8–26% of weight support. Lift production in Anna''s hummingbirds is more evenly distributed between the stroke phases than previously estimated for Rufous hummingbirds, in accordance with the generally symmetric down- and upstrokes that characterize hovering in these birds.  相似文献   

8.
We examined the feasibility of automating the collection of hummingbird mass data facilitated by low‐cost, low‐power radio frequency identification (RFID) technology. In a field study in southern Ontario, wild hummingbirds were captured, subcutaneously implanted with passive integrated transponder (PIT) tags, and released over a three‐year period. Tagged hummingbirds were detected at specially designed feeder stations outfitted with low‐cost, low‐power RFID readers coupled with a perch secured to a digital balance. When tagged birds visited the feeder, transponder detection initiated the recording of the perched hummingbird's mass at regular intervals continuing as long as the bird remained. This permitted a nearly continuous record of mass during each visit. Mass data collected from tagged hummingbirds showed consistent trends at multiple temporal scales: the individual feeder visit, single days, and even whole seasons. These results further confirm that RFID technology is safe for use in the smallest birds. The effective detection range is a function of RFID reader power, antenna, and tag size. Yet, we find that careful arrangement of feeders and detectors allows for reliable detection even when detection range is low. When coupled with additional technologies, such as a precision electronic balance, this approach can yield robust serial measures of physiological parameters such as mass, an indicator of energy balance over time.  相似文献   

9.
Why hummingbirds have such large crops   总被引:2,自引:0,他引:2  
Summary Male Anna's Hummingbirds (Calypte anna) defend territories that contain a predictable food source, floral nectar. For such a hummingbird, the meal size that maximizes long-term net energy intake is less than the maximal crop volume. Smaller meals must be consumed more frequently, but larger meals increase body mass and therefore flight cost. Individuals without territories or with inadequate territories do not have easy access to nectar and intrude on territories owned by otherC. anna, where they may be chased at nay time. It was predicted that these intruders should minimize the number of potentially risky intrusions necessary for maintenance by ingesting as much nectar as possible whenever they manage to feed without being chased (usually when owners are temporarily absent). Therefore, relative to uninterrupted feeding by owners, uninterrupted intruders should feed longer and take larger meals. Field observations supported these predictions. Intruders apparently filled their crops in all seasons, whereas owners ingested smaller amounts (0.21–0.22 ml) and fed for lengths of time consistent with the prediction of an optimization model (0.21 ml). Thus, owners may energetically optimize meal size whereas intruders fill their crops whenever they are not chased. Under most conditions, hummingbirds only fill their crops one-tenth to one-third full, leading to the question why hummingbirds have such large crops. This study demonstrates that a large crop volume may be of survival value when an individual lacks a territory or has inadequate access to resources and must poach on others' territories.  相似文献   

10.
Hypotheses explaining the use of intermittent bounding and undulatingflight modes in birds are considered. Existing theoretical modelsof intermittent flight have assumed that the animal flies ata constant speed throughout. They predict that mean mechanicalpower in undulating (flap-gliding) flight is reduced comparedto steady flight over a broad range of speeds, but is reducedin bounding flight only at very high flight speeds. Lift generatedby the bird's body or tail has a small effect on power, butis insufficient to explain observations of bounding at intermediateflight speeds. Measurements on starlings Sturnus vulgaris inundulating flight in a wind tunnel show that flight speed variesby around ±1 m/sec during a flap-glide cycle. Dynamicenergy is used to quantify flight performance, and reveals thatthe geometry of the flight path depends upon wingbeat kinematics,and that neither flapping nor gliding phases are at constantspeed and angle to the horizontal. The bird gains both kineticand potential energy during the flapping phases. A new theoreticalmodel indicates that such speed variation can give significantsavings in mechanical power in both bounding and undulatingflight. Alternative hypotheses for intermittent flight includea gearing mechanism, based on duty factor, mediating musclepower or force output against aerodynamic requirements. Thiscould explain the use of bounding flight in hovering and climbingin small passerines. Both bounding and undulating confer otheradaptive benefits; undulating may be primitive in birds, butbounding may have evolved in response to flight performanceoptimization, or to factors such as unpredictability in responseto predation.  相似文献   

11.
The elongated tails adorning many male birds have traditionally been thought to degrade flight performance by increasing body drag. However, aerodynamic interactions between the body and tail can be substantial in some contexts, and a short tail may actually reduce rather than increase overall drag. To test how tail length affects flight performance, we manipulated the tails of Anna''s hummingbirds (Calypte anna) by increasing their length with the greatly elongated tail streamers of the red-billed streamertail (Trochilus polytmus) and reducing their length by removing first the rectrices and then the entire tail (i.e. all rectrices and tail covert feathers). Flight performance was measured in a wind tunnel by measuring (i) the maximum forward speed at which the birds could fly and (ii) the metabolic cost of flight while flying at airspeeds from 0 to 14 m s−1. We found a significant interaction effect between tail treatment and airspeed: an elongated tail increased the metabolic cost of flight by up to 11 per cent, and this effect was strongest at higher flight speeds. Maximum flight speed was concomitantly reduced by 3.4 per cent. Also, removing the entire tail decreased maximum flight speed by 2 per cent, suggesting beneficial aerodynamic effects for tails of normal length. The effects of elongation are thus subtle and airspeed-specific, suggesting that diversity in avian tail morphology is associated with only modest flight costs.  相似文献   

12.
Temporal partitioning of a floral resource by territorial hummingbirds   总被引:1,自引:0,他引:1  
PETER A. COTTON 《Ibis》1998,140(4):647-653
Most studies of territoriality in hummingbirds have focused on intraspecific competition for resources and the consequences for the spatial distribution of individuals within a habitat. As a result, we know little of the effects of interspecific competition for resources and less still of temporal resource partitioning. Here I describe the interactions of four species of tropical hummingbird which defended the same territory at different stages in the flowering period and at different times of the day. The pattern of territory defence was greatly influenced by the dominance hierarchy between species and the costs and benefits of territory ownership. I used a simple economic model to calculate the predicted territory size based on four potential strategies. Hummingbirds appeared to be defending territories of the smallest economical size, agreeing with two hypotheses: (1) that hummingbirds minimize the cost of territory ownership and (2) that hummingbirds maximize the time spent sitting. The model predicted accurately the observed pattern of territory acquisition; hummingbirds initiated defence as soon as the territory contained sufficient resources and were either displaced by a larger species or replaced by a smaller one as the value of the territory changed.  相似文献   

13.
Do Arctic waders use adaptive wind drift?   总被引:2,自引:0,他引:2  
We analysed five data sets of flight directions of migrating arctic waders in relation to winds, recorded by tracking radar and optical range finder, in order to find out if these birds compensate for wind drift, or allow themselves to be drifted by winds. Our purpose was to investigate whether arctic waders use adaptive wind drift strategies or not. The data sets were collected in Siberia (two sets) and Canada during post-breeding (autumn) migration, and in Mauritania and South Sweden during pre-breeding (spring) migration. Both significant drift and compensation effects were found in three of the data sets, Canada, Mauritania and South Sweden. Almost no compensation was found in birds departing in easterly directions from the Siberian tundra (complete drift), while no drift effect was found in birds departing in westerly directions (complete compensation). There were indications that at least some populations of waders may use an adaptive drift strategy consisting of drift at high altitude and/or in high wind speed combined with compensation at low altitude and/or in lower wind speeds, but support for this idea was rather weak and not consistent. Our results were instead more in accordance with the adaptive drift theory that predicts initial drift during the migratory journey, followed by compensation during later stages as the birds are approaching their destinations. Such a strategy implies that arctic waders, at least adult birds, have the capacity of true navigation. A comparison with earlier studies of migrating arctic waders from different parts of the world show that all results so far may be interpreted in accordance with this general adaptive drift strategy. An element of non-adaptive drift can, however, not be completely ruled out.  相似文献   

14.
Most terrestrial animals face the challenge of having to conserve water in a desiccating environment. Not surprisingly, the ability to produce concentrated urine has been relatively well studied in birds. Nectar-feeding birds are unusual among terrestrial animals in that they often ingest and excrete prodigious water volumes to obtain adequate energy. Thus, they confront the unusual challenge of having to conserve electrolytes. The diluting abilities of birds and the renal mechanisms that may correlate with them have been relatively neglected. To elucidate diluting and concentrating abilities in nectar-feeding birds, we fed rufous hummingbirds Selasphorus rufus an electrolyte-free nectar and a nectar containing a range of NaCl concentrations. Hummingbirds had a spectacular (and possibly unique) diluting ability: when fed on electrolyte-free food they produced excreta containing less than 0.5 mM l−1 each of sodium and potassium. Hummingbirds also had a poor concentrating ability, retaining sodium and chloride when their food (0.632 M l−1 sucrose) contained more than 35 mM l−1 of NaCl. The kidneys of hummingbirds do not appear to be suited for concentrating urine, and possibly contain structural features that give them a unique diluting ability compared with those of birds that do not feed on nectar.  相似文献   

15.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds'' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes.  相似文献   

16.
We sought to characterize the ability of hummingbirds to fuel their energetically expensive hovering flight using dietary sugar by a combination of respirometry and stable carbon isotope techniques. Broadtailed hummingbirds (Selasphorus platycercus) were maintained on a diet containing beet sugar with an isotopic composition characteristic of C3 plants. Hummingbirds were fasted and then offered a solution containing cane sugar with an isotopic composition characteristic of C4 plants. By monitoring the rates of CO2 production and O2 consumption, as well as the stable carbon isotope composition of expired CO2, we were able to estimate the relative contributions of carbohydrate and fat, as well as the absolute rate at which dietary sucrose was oxidized during hovering. The combination of respirometry and carbon isotope analysis revealed that hummingbirds initially oxidized endogenous fat following a fast and then progressively oxidized proportionately more carbohydrates. The contribution from dietary sources increased with each feeding bout, and by 20 min after the first meal, dietary sugar supported approximately 74% of hovering metabolism. The ability of hummingbirds to satisfy the energetic requirements of hovering flight mainly with recently ingested sugar is unique among vertebrates. Our finding provides an example of evolutionary convergence in physiological and biochemical traits among unrelated nectar-feeding animals.  相似文献   

17.
Many birds fly at high altitude, either during long-distanceflights or by virtue of residence in high-elevation habitats.Among the many environmental features that vary systematicallywith altitude, five have significant consequences for avianflight performance: ambient wind speeds, air temperature, humidity,oxygen availability, and air density. During migratory flights,birds select flight altitudes that minimize energy expenditurevia selection of advantageous tail- and cross-winds. Oxygenpartial pressure decreases substantially to as little as 26%of sea-level values for the highest altitudes at which birdsmigrate, whereas many taxa reside above 3000 meters in hypoxicair. Birds exhibit numerous adaptations in pulmonary, cardiovascular,and muscular systems to alleviate such hypoxia. The systematicdecrease in air density with altitude can lead to a benefitfor forward flight through reduced drag but imposes an increasedaerodynamic demand for hovering by degrading lift productionand simultaneously elevating the induced power requirementsof flight. This effect has been well-studied in the hoveringflight of hummingbirds, which occur throughout high-elevationhabitats in the western hemisphere. Phylogenetically controlledstudies have shown that hummingbirds compensate morphologicallyfor such hypodense air through relative increases in wing size,and kinematically via increased stroke amplitude during thewingbeat. Such compensatory mechanisms result in fairly constantpower requirements for hovering at different elevations, butdecrease the margin of excess power available for other flightbehaviors.  相似文献   

18.
Most terrestrial animals face the challenge of having to conserve water in a desiccating environment. Not surprisingly, the ability to produce concentrated urine has been relatively well studied in birds. Nectar‐feeding birds are unusual among terrestrial animals in that they often ingest and excrete prodigious water volumes to obtain adequate energy. Thus, they confront the unusual challenge of having to conserve electrolytes. The diluting abilities of birds and the renal mechanisms that may correlate with them have been relatively neglected. To elucidate diluting and concentrating abilities in nectar‐feeding birds, we fed rufous hummingbirds Selasphorus rufus an electrolyte‐free nectar and a nectar containing a range of NaCl concentrations. Hummingbirds had a spectacular (and possibly unique) diluting ability: when fed on electrolyte‐free food they produced excreta containing less than 0.5 mM l?1 each of sodium and potassium. Hummingbirds also had a poor concentrating ability, retaining sodium and chloride when their food (0.632 M l?1 sucrose) contained more than 35 mM l?1 of NaCl. The kidneys of hummingbirds do not appear to be suited for concentrating urine, and possibly contain structural features that give them a unique diluting ability compared with those of birds that do not feed on nectar.  相似文献   

19.
We have studied the nocturnal flight behaviour of the common swift (Apus apus L.), by the use of a tracking radar. Birds were tracked from Lund University in southern Sweden during spring migration, summer roosting flights and autumn migration. Flight speeds were compared with predictions from flight mechanical and optimal migration theories. During spring, flight speeds were predicted to be higher than during both summer and autumn due to time restriction. In such cases, birds fly at a flight speed that maximizes the overall speed of migration. For summer roosting flights, speeds were predicted to be lower than during both spring and autumn since the predicted flight speed is the minimum power speed that involves the lowest energy consumption per unit time. During autumn, we expected flight speeds to be higher than during summer but lower than during spring since the expected flight speed is the maximum range speed, which involves the lowest energy consumption per unit distance. Flight speeds during spring were indeed higher than during both summer and autumn, which indicates time-selected spring migration. Speeds during autumn migration were very similar to those recorded during summer roosting flights. The general result shows that swifts change their flight speed between different flight behaviours to a smaller extent than expected. Furthermore, the difference between flight speeds during migration and roosting among swifts was found to be less pronounced than previously recorded.  相似文献   

20.
ABSTRACT Over the past several decades, there have been numerous reports of hummingbirds wintering in the southeastern United States. However, little is known about the species present and their relative abundance. From November 1998 to March 2008, we examined the species diversity, sex and age ratios, and site fidelity of hummingbirds wintering in southern Alabama and northern Florida. We captured and banded 1598 individuals representing 10 species, and the most frequently captured species were Rufous Hummingbirds (Selasphorus rufus; 51.6%), Ruby‐throated Hummingbirds (Archilochus colubris; 23.5%), and Black‐chinned Hummingbirds (Archilochus alexandri; 16.9%). Other species captured included Buff‐bellied Hummingbirds (Amazilia yucatanensis), Calliope Hummingbirds (Stellula calliope), Allen's Hummingbirds (Selasphorus sasin), Broad‐tailed Hummingbirds (Selasphorus platycercus), Broad‐billed Hummingbirds (Cynanthus latirostris), Anna's Hummingbirds (Calypte anna), and Costa's Hummingbirds (Calypte costae). Most hummingbirds (71.8%) were captured in December and January. For most species, sex ratios were male‐biased for juveniles and female‐biased for adults, indicating possible differential mortality. Of 1598 hummingbirds captured, 144 representing five species returned to the same wintering location at least once. Female Rufous Hummingbirds (20.4% of individuals captured) exhibited the greatest site fidelity. Recaptures of banded Rufous Hummingbirds in autumn and early winter revealed that some individuals moved south into Alabama or Florida from Tennessee, northern Georgia, and northern Louisiana. Same‐season recaptures of banded Rufous Hummingbirds suggest that their spring migration route is west along the Gulf Coast. Our results suggest that Alabama and Florida are viable overwintering areas for several species of hummingbirds, with numbers of species and individuals higher than previously recognized. However, more study is needed to confirm migration routes and to determine if Ruby‐throated Hummingbirds wintering in our study area are year‐round residents or migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号