首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

2.
3.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

4.
5.
Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studies of gene function. However, efficient VIGS has only been accomplished in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on Pea early browning virus (PEBV) would produce recognizable phenotypes in Pisum sativum. A plasmid vector of PEBV was modified to allow agro-inoculation and insertion of heterologous sequences. cDNA fragments of the P. sativum phytoene desaturase (PDS), LEAFY (LFY) and KORRIGAN1 (KOR1) homologues were inserted into the PEBV RNA2 vector, replacing the genes required for nematode transmission. Pisum sativum inoculated with PEBV carrying a fragment of PsPDS developed characteristic photo-bleached leaves and this phenotype was associated with a significant reduction in PsPDS mRNA. The P. sativum homologue of LFY is known as UNIFOLIATA (UNI). Plants inoculated with PEBV carrying a fragment of UNI developed distorted flowers and leaves with modified architecture, which are also observed in UNI-mutants. In Arabidopsis thaliana, the KOR1-mutant is characterized by an extreme dwarf phenotype. Pisum sativum plants inoculated with PEBV carrying a fragment of PsKOR1 displayed a significant reduction in height and inhibition of root growth. The PEBV VIGS vector did not affect the ability of P. sativum to flower, set seeds, and form nodules characteristic of symbiosis with rhizobium. These results suggest that the PEBV vector can be applied to functional genomics in a legume species to study genes involved in a wide range of biological processes.  相似文献   

6.
VIGS (virus induced gene silencing) is considered as a powerful genomics tool for characterizing the function of genes in a few closely related plant species. The investigations have been carried out mainly in order to test if a pre-existing VIGS vector can serve as an efficient tool for gene silencing in a diverse array of plant species. Another route of investigation has been the constructing of new viral vectors to act in their hosts. Our approach was the creation of a heterologous system in which silencing of endogenous genes was achieved by sequences isolated from evolutionary remote species. In this study, we showed that a TRV-based vector cloned with sequences from a gymnosperm, Taxus baccata L. silenced the endogenous phytoene desaturase in an angiosperm, N. benthamiana. Our results showed that inserts of between 390 and 724 bp isolated from a conserved fragment of the Taxus PDS led to silencing of its homolog in tobacco. The real time analysis indicated that the expression of PDS was reduced 2.1- to 4.0-fold in pTRV-TbPDS infected plants compared with buffer treated plants. Once the best insert is identified and the conditions are optimized for heterologous silencing by pTRV-TbPDS in tobacco, then we can test if TRV can serve as an efficient silencing vector in Taxus. This strategy could also be used to silence a diverse array of genes from a wide range of species which have no VIGS protocol. The results also showed that plants silenced heterologously by the VIGS system a minimally affected with respect to plant growth which may be ideal for studying the genes that their complete loss of function may lead to decrease of plant growth or plant death.  相似文献   

7.
Virus-induced gene silencing in Solanum species   总被引:9,自引:0,他引:9  
Virus-induced gene silencing (VIGS) has been used routinely in Nicotiana benthamiana to assess functions of candidate genes and as a way to discover new genes required for diverse pathways, especially disease resistance signalling. VIGS has recently been shown to work in Arabidopsis thaliana and in tomato. Here, we report that VIGS using the tobacco rattle virus (TRV) viral vector can be used in several Solanum species, although the choice of vector and experimental conditions vary depending on the species under study. We have successfully silenced the phytoene desaturase (PDS) gene in the diploid wild species Solanum bulbocastanum and S. okadae, in the cultivated tetraploid S. tuberosum and in the distant hexaploid relative S. nigrum (commonly known as deadly nightshade). To test whether the system could be utilised as a rapid way to assess gene function of candidate resistance (R) genes in potato and its wild relatives, we silenced R1 and Rx in S. tuberosum and RB in S. bulbocastanum. Silencing of R1, Rx and RB successfully attenuated R-gene-mediated disease resistance and resulted in susceptible phenotypes in detached leaf assays. Thus, the VIGS system is an effective method of rapidly assessing gene function in potato.  相似文献   

8.
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screening and some plants are difficult to infiltrate. Here we have developed a novel and simple method of agroinoculation, called 'agrodrench', where soil adjacent to the plant root is drenched with an Agrobacterium suspension carrying the TRV-derived VIGS vectors. By agrodrench we successfully silenced the expression of phytoene desaturase (PDS), a 20S proteasome subunit (PB7) or Mg-protoporphyrin chelatase (Chl H) encoding genes in Nicotiana benthamiana and in economically important crops such as tomato, pepper, tobacco, potato, and Petunia, all belonging to the Solanaceae family. An important aspect of agrodrench is that it can be used for VIGS in very young seedlings, something not possible by the leaf infiltration method, which usually requires multiple fully expanded leaves for infiltration. We also demonstrated that VIGS functioned to silence target genes in plant roots. The agrodrench method of agroinoculation was more efficient than the leaf infiltration method for VIGS in roots. Agrodrench will facilitate rapid large-scale functional analysis of cDNA libraries and can also be applied to plants that are not currently amenable to VIGS technology by conventional inoculation methods.  相似文献   

9.
Virus-induced gene silencing in tomato   总被引:40,自引:0,他引:40  
We have previously demonstrated that a tobacco rattle virus (TRV)-based vector can be used in virus-induced gene silencing (VIGS) to study gene function in Nicotiana benthamiana. Here we show that recombinant TRV infects tomato plants and induces efficient gene silencing. Using this system, we suppressed the PDS, CTR1 and CTR2 genes in tomato. Suppression of CTR1 led to a constitutive ethylene response phenotype and up-regulation of an ethylene response gene, CHITINASE B. This phenotype is similar to Arabidopsis ctr1 mutant plants. We have constructed a modified TRV vector based on the GATEWAY recombination system, allowing restriction- and ligation-free cloning. Our results show that tomato expressed sequence tags (ESTs) can easily be cloned into this modified vector using a single set of primers. Using this vector, we have silenced RbcS and an endogenous gene homologous to the tomato EST cLED3L14. In the future, this modified vector system will facilitate large-scale functional analysis of tomato ESTs.  相似文献   

10.
Yamagishi N  Yoshikawa N 《Uirusu》2010,60(2):155-162
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antivirus defense mechanism in plants and has been shown to have great potential in plant reverse genetics. When the virus vector carries sequences of plant genes, virus infection triggers VIGS that results in the degradation of endogenous mRNAs homologous to the plant genes. The system is well established in Nicotiana benthamiana and several reliable VIGS vectors have been developed for other plant species including important agricultural crops. Here, we describe the use of VIGS technology to determine gene function and plant virus vectors for induction of VIGS in plants.  相似文献   

11.
12.
Virus-induced gene silencing in plants   总被引:18,自引:0,他引:18  
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying inserts derived from host genes the process can be additionally targeted against the corresponding mRNAs. VIGS has been used widely in plants for analysis of gene function and has been adapted for high-throughput functional genomics. Until now most applications of VIGS have been in Nicotiana benthamiana. However, new vector systems and methods are being developed that could be used in other plants, including Arabidopsis. Here we discuss practical and theoretical issues that are specific to VIGS rather than other gene "knock down" or "knockout" approaches to gene function. We also describe currently used protocols that have allowed us to apply VIGS to the identification of genes required for disease resistance in plants. These methods and the underlying general principles also apply when VIGS is used in the analysis of other aspects of plant biology.  相似文献   

13.
Virus-induced gene silencing (VIGS) is one of the commonly used RNA silencing methods in plant functional genomics. It is widely known that VIGS can occur for about 3 weeks. A few reports show that duration of VIGS can be prolonged for up to 3 months. Increasing the duration of endogenous gene silencing and developing a method for nonintegration-based persistent VIGS in progeny seedlings will widen the application of VIGS. We used three marker genes that provoke visible phenotypes in plants upon silencing to study persistence and transmittance of VIGS to progeny in two plant species, Nicotiana benthamiana and tomato. We used a Tobacco rattle virus (TRV)-based VIGS vector and showed that the duration of gene silencing by VIGS can occur for more than 2 years and that TRV is necessary for longer duration VIGS. Also, inoculation of TRV-VIGS constructs by both Agrodrench and leaf infiltration greatly increased the effectiveness and duration of VIGS. Our results also showed transmittance of VIGS to progeny seedlings via seeds. A longer silencing period will facilitate detailed study of target genes in plant development and stress tolerance. Further, the transmittance of VIGS to progeny will be useful in studying the effect of gene silencing in young seedlings. Our results provide a new dimension for the application of VIGS in plants.  相似文献   

14.
Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.  相似文献   

15.
Efficient virus-induced gene silencing in Arabidopsis   总被引:2,自引:0,他引:2       下载免费PDF全文
Virus-induced gene silencing (VIGS) is a plant RNA-silencing technique that uses viral vectors carrying a fragment of a gene of interest to generate double-stranded RNA, which initiates the silencing of the target gene. Several viral vectors have been developed for VIGS and they have been successfully used in reverse genetics studies of a variety of processes occurring in plants. This approach has not been widely adopted for the model dicotyledonous species Arabidopsis (Arabidopsis thaliana), possibly because, until now, there has been no easy protocol for effective VIGS in this species. Here, we show that a widely used tobacco rattle virus-based VIGS vector can be used for silencing genes in Arabidopsis ecotype Columbia-0. The protocol involves agroinfiltration of VIGS vectors carrying fragments of genes of interest into seedlings at the two- to three-leaf stage and requires minimal modification of existing protocols for VIGS with tobacco rattle virus vectors in other species like Nicotiana benthamiana and tomato (Lycopersicon esculentum). The method described here gives efficient silencing in Arabidopsis ecotype Columbia-0. We show that VIGS can be used to silence genes involved in general metabolism and defense and it is also effective at knocking down expression of highly expressed transgenes. A marker system to monitor the progress and efficiency of VIGS is also described.  相似文献   

16.
17.
A modified viral satellite DNA that suppresses gene expression in plants   总被引:17,自引:0,他引:17  
DNAbeta is a type of single-stranded (ss) circular satellite DNA found in association with monopartite-genome begomoviruses, such as Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10). Y10 DNAbeta is required for symptom expression in plants but depends on TYLCCNV-Y10 genomic DNA (DNA-A) for replication and encapsidation. When we converted DNAbeta into a gene-silencing vector (modified DNAbeta (DNAmbeta)) by replacing its C1 open-reading frame (ORF) with a multiple cloning site (MCS), it was replicated but no longer induced symptoms in association with TYLCCNV-Y10 DNA-A, so allowing the effects of gene inserts to be recognized easily. Insertion into DNAmbeta of sequences from any of the three host genes (proliferating cell nuclear antigen (PCNA), phytoene desaturase (PDS), and sulfur (Su)), or from a transgene (green fluorescent protein (GFP)), resulted in silencing of the cognate gene in Nicotiana benthamiana. The silencing persisted for more than a month and was associated with decreased levels of mRNA of the gene targeted. Although DNAmbeta probably does not enter meristematic tissue, the PCNA gene could be silenced there. DNAmbeta was an effective silencing vector in tested N. glutinosa, N. tabacum Samsun (NN or nn), and Lycopersicon esculentum plants, and was able to silence two genes simultaneously. This satellite DNA vector-based form of virus-induced gene silencing (VIGS) promises to be applicable to other begomovirus/DNAbeta systems, which are recently reported to occur in several dicotyledonous crop species, thereby providing a powerful approach to gene discovery and the analysis of gene function in these crops.  相似文献   

18.
Jatropha curcas L. is a small, woody tree of the Euphorbiaceae family. This plant can grow on marginal land in the tropical and subtropical regions and produces seeds containing up to 30% oil. Several Asian countries have selected Jatropha for large scale planting as a biodiesel feedstock. Nevertheless, Jatropha also possesses several undesirable traits that may limit its wide adoption. An improved understanding of plant development and the regulation of fatty acid (FA) and triacylglyceride biosynthesis in Jatropha is particularly facilitative for the development of elite crops. Here, we show that a tobacco rattle virus (TRV) vector can trigger virus-induced gene silencing (VIGS) in Jatropha. Our optimized method produced robust and reliable gene silencing in plants agroinoculated with recombinant TRV harbouring Jatropha gene sequences. We used VIGS to investigate possible functions of 13 Jatropha genes of several functional categories, including FA biosynthesis, developmental regulation and toxin biosynthesis, etc. Based on the effects of VIGS on the FA composition of newly emerged leaves, we determined the function of several genes implicated in FA biosynthesis. Moreover, VIGS was able to discriminate independent functions of related gene family members. Our results show that VIGS can be used for high-throughput screening of Jatropha genes whose functions can be assayed in leaves.  相似文献   

19.
传统的植物遗传转化方法周期长、工作量大、过程繁琐,不利于基因功能的快速高通量鉴定.近年来随着基因沉默机制研究的深入和不断发展,利用病毒诱导的基因沉默(Virus induced gene silencing,VIGS)进行植物功能基因组研究作为一种快速、高通量的反向遗传学工具已被广泛应用在烟草、马铃薯、番茄等植物中, 在大规模的植物基因组功能鉴定中展示了广阔的应用前景.综述了 VIGS 的作用机制、植物病毒栽体、转化方法以及在植物基因功能研究等方面的应用及前景.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号