首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物在次级代谢过程中通常会产生结构复杂、活性多样的天然产物。这些天然产物是新药发展的基础,亦可作为先导化合物或重要的药效基团用于药物研发。结构多样的氨基酸单元是参与合成复杂多样天然产物的重要前体。天然产物中的β-甲基氨基酸单元不仅可以赋予其生物活性,还能增强其生物稳定性而不被肽酶水解。本文综述了含有β-甲基氨基酸单元的天然产物,尤其对含有β-甲基色氨酸单元的天然产物生物合成途径进行了阐释。对β-甲基色氨酸单元生物合成途径的理解结合基因组数据有助于进行新结构天然产物的挖掘,并为运用代谢科学理念和合成生物学技术开发含有该单元的新化合物提供理论基础和可操作遗传元件。  相似文献   

2.
微生物在次级代谢过程中通常会产生结构复杂、活性多样的天然产物。这些天然产物是新药发展的基础,亦可作为先导化合物或重要的药效基团用于药物研发。结构多样的氨基酸单元是参与合成复杂多样天然产物的重要前体。天然产物中的β-甲基氨基酸单元不仅可以赋予其生物活性,还能增强其生物稳定性而不被肽酶水解。本文综述了含有β-甲基氨基酸单元的天然产物,尤其对含有β-甲基色氨酸单元的天然产物生物合成途径进行了阐释。对β-甲基色氨酸单元生物合成途径的理解结合基因组数据有助于进行新结构天然产物的挖掘,并为运用代谢科学理念和合成生物学技术开发含有该单元的新化合物提供理论基础和可操作遗传元件。  相似文献   

3.
海洋动物是具有生物活性海洋天然产物的重要来源。海鞘中含有丰富的微生物类群,如细菌、放线菌、真菌和蓝细菌。越来越多的直接或间接证据表明,一些从海鞘中分离的天然产物并不是海鞘本身产生的,而是由其共生微生物产生的。本文对近些年来的海鞘天然产物的微生物来源的研究方法进行综述,包括可培养细菌的分离、不可培养细菌的粗提物检测、宏基因组学、全基因组测序等直接方法,以及化合物结构比对的间接方法。通过对海鞘-微生物共生体中天然产物生物合成来源的研究,不仅可以从根本上解决动物药源的问题,而且可为研究海鞘与微生物共生关系提供有力证据。  相似文献   

4.
丙二酰辅酶A是一种重要的微生物胞内代谢中间产物,由于其独特的结构,可衍生为几类具有独特结构的化合物,包括:脂肪酸类化合物、生物基化学品和植物源黄酮及聚酮类天然产物等。这些化合物广泛应用于食品、医药、化工和能源等领域。目前,微生物大量合成上述丙二酰辅酶A衍生物的限制性因素是其胞内较低的丙二酰辅酶A含量。本文中,笔者以提高微生物合成丙二酰辅酶A衍生物为核心,综述了提高其前体丙二酰辅酶A导向目标产物的代谢工程策略,包括丙二酰辅酶A合成途径的强化、竞争支路途径的消减以及其含量的精细调控等,以期为微生物合成丙二酰辅酶A衍生物的进一步研究提供参考。  相似文献   

5.
毛壳属真菌是一类资源极为丰富的真菌,种名超过400多种。研究发现其次生代谢产物结构新颖,生物活性突出,是新药或其先导化合物的重要来源。迄今为止,从毛壳属代谢物中分离鉴定的化合物已超过300个,包含细胞松弛素、azaphilone类、二酮哌嗪类、色原酮、蒽醌等结构类型,大多具有细胞毒、抗炎、抗微生物等生物活性。本文从化合物结构及其生物活性等方面综述2011-2016年间毛壳属真菌天然产物的研究概况。  相似文献   

6.
以生物合成为基础的代谢工程和组合生物合成   总被引:9,自引:0,他引:9  
代谢工程和组合生物合成在筛选和发展新型药物方面日益成为生物、化学和医药界关注的重点。基于聚酮和聚肽类天然产物的独特化学结构和良好生物活性,研究它们的生物合成机制,将为合理化遗传修饰生物合成途径获得结构类似物提供遗传和生物化学的基础,实现利用现代生物学和化学的技术手段在微生物体内进行药物开发的目的。  相似文献   

7.
昆虫共生菌的次级代谢产物研究进展   总被引:1,自引:0,他引:1  
微生物与昆虫的共生是一种普遍现象,昆虫种类繁多,与昆虫共生的微生物也多种多样。昆虫共生菌是活性次生代谢产物的重要来源。本文对自2008年以来已报道的177个昆虫共生菌的次级代谢产物进行了统计和分析,结果表明:61.6%的化合物为新天然产物(生物碱类新化合物最多),其中,约75%的新化合物来源于昆虫共生真菌,25%来源于细菌;醌酮类化合物是昆虫共生菌源天然产物的主要结构类型,占23.2%;47.5%的化合物具有显著的抗肿瘤、抗菌、除草和抗氧化等生物活性,且化合物中的主要活性类型是抗菌和抗肿瘤活性,活性范围覆盖面最广的结构类型是生物碱类。以上结果表明昆虫共生菌的次级代谢产物是先导性化合物的重要来源且具有丰富的生物活性类型。本文以天然产物的结构分类为切入点,结合其研究菌株来源、生物活性等进行综述,旨在为充分挖掘昆虫共生菌次级代谢产物提供重要参考。  相似文献   

8.
真菌聚酮合酶-非核糖体多肽合成酶(PKS-NRPS)由于聚合两大主要催化模块PKS与NRPS,能够催化结合来源广泛的聚酮骨架和氨基酸生成结构丰富多样和生物活性广泛的天然产物.本文对2013年至2019年4月真菌来源的14个PKS-NRPS基因及其对应的72个PKS-NRPS杂合天然产物的化学结构、生物活性及生物合成进行总结和论述,并对目前为止报道的所有26个PKS-NRPS基因的同源性及与化合物结构之间的相关性进行分析和讨论,为真菌PKS-NRPS类天然产物及其生物合成研究提供参考.  相似文献   

9.
白僵菌是重要的昆虫病原真菌,能产生多肽类、聚酮类、生物碱类、苯丙素类、萜类、核苷类等多种结构类型的天然产物,其中很多天然产物显示出优良的抗肿瘤、抗菌、抗病毒和杀虫等活性,具有极大的应用开发潜力。随着白僵菌基因组测序的完成,白僵菌素、白僵菌交酯、球孢交酯、卵孢素及纤细素等活性分子的生物合成基因簇及其生物合成机制已得到阐明,这些研究将大大促进白僵菌来源的新结构活性天然产物的基因组挖掘和发现以及已知重要活性分子的开发应用。本文对已知白僵菌产生的天然产物、药理活性及重要活性分子的生物合成途径进行了概括总结,为系统开发白僵菌天然产物资源提供参考。  相似文献   

10.
海洋真菌由于其遗传背景复杂、代谢产物种类多且产量高,已成为海洋微生物新天然产物的主要来源,从我们对2010–2013年初的海洋微生物来源新天然产物的统计来看,研究最多的是曲霉属(Aspergillus)真菌,占海洋真菌来源新天然产物的31%。本文从菌株来源、化合物结构及其生物活性等方面,综述了自1992年第一个海洋曲霉天然产物到2014年8月已报道的共512个海洋曲霉来源的新天然产物。这些海洋天然产物具有丰富的化学多样性,且36%的化合物表现出细胞毒、抑菌、抗氧化和抗寄生虫等生物活性;含氮化合物是其主要的结构类型、约占曲霉源海洋天然产物总数的52%,也是出现活性化合物比例最高的结构类型、约40%的含氮化合物具有生物活性,其中脱氢二酮哌嗪生物碱halimide的化学衍生物plinabulin已结束II期临床研究,并于2015年第三季度开始在美国和中国进行III期临床研究,用于治疗转移性的晚期非小细胞肺癌。  相似文献   

11.
【背景】微生物来源的天然产物是小分子药物或药物先导物的重要来源。对链霉菌Streptomyces antibioticus NRRL 8167的基因组分析显示,其包含多个次级代谢产物的生物合成基因簇,具有产生多种新化合物的潜力。【目的】对链霉菌S. antibioticus NRRL 8167中次级代谢产物进行研究,以期发现结构新颖或生物活性独特的化合物,并对相应产物的生物合成基因簇和生物合成途径进行解析。【方法】利用HPLC图谱结合特征性紫外吸收和LC-MS方法,排除S. antibioticus NRRL 8167产生的已知化合物,确定具有特殊紫外吸收的化合物作为挖掘对象,然后利用正、反相硅胶柱色谱、高效液相色谱等技术对次级代谢产物进行分离纯化,分离化合物。利用质谱及核磁共振光谱技术对化合物结构进行解析和鉴定;提取链霉菌S. antibioticus NRRL 8167基因组DNA,利用PacBio测序平台进行基因组测序;利用生物信息学对基因组进行注释,并对合成该化合物的基因簇进行定位分析,推导其生物合成途径。【结果】确定这个化合物是NaphthgeranineA,属于聚酮类化合物。全基因组序列分析发现S.antibioticusNRRL8167基因组含有28个次级代谢产物生物合成基因簇,其中基因簇20可能负责Naphthgeranine A的生物合成,并对其生物合成途径进行了推导。【结论】基于紫外吸收光谱和质谱特征,从S. antibioticus NRRL 8167菌株的发酵提取物中分离鉴定了一个聚酮类化合物Naphthgeranine A。该菌株的全基因组测序为其生物合成基因簇的鉴定提供了前提,对Naphthgeranine A生物合成基因簇和生物合成途径的推测为进一步研究这个化合物的生物合成机制奠定了基础。  相似文献   

12.
The area of natural products research is the most rapidly growing field of organic chemistry, due to the great technical developments in the isolation and identification techniques. Today, near to one million natural products -isolated from the most diverse living things- are known. Microorganisms are among the least-studied of these. Nevertheless, they offer large possibilities for the discovery of new structures and biological activities. Among the microorganisms, the Basidiomycetes present a production capacity and a range of biologically active metabolites, which have scarcely been investigated. The wide spectrum of natural products with biological activity produced by Basidiomycetes includes antimicrobial agents, antifungal, antiviral and cytotoxic activities, enzymes, plant growth regulators and flavors. These metabolites are generally grouped by their chemical origin, and the relationship between chemical structure and the different biological activities reported. The main objective of this review is to bring an updated revision of the numerous and interesting biosynthetic pathways from basidiomycetes.  相似文献   

13.
【背景】海洋来源的天然产物近年来已成为小分子药物的重要来源。对海洋链霉菌Streptomyces sp. B9173的基因组分析显示,该菌包含多种天然产物的生物合成基因簇,具有产生多种新化合物的潜力。【目的】挖掘B9173菌株中未知的次级代谢产物,以期发现结构新颖或生物活性独特的化合物。【方法】利用HPLC/LC-MS结合的方法,排除了该菌株产生的已知化合物,确定3个未知化合物作为挖掘对象,然后利用正、反相硅胶柱色谱、葡聚糖凝胶柱色谱和高效液相色谱等技术对次级代谢产物进行分离纯化,最后得到化合物单体。利用质谱及核磁共振光谱技术对化合物结构进行解析和鉴定。【结果】确定3个化合物分别是色胺酮、甲基异靛蓝和N,N-二甲基异靛蓝,三者都属于2-吲哚酮生物碱。其中色胺酮具有非常广的生物活性,包括抗菌、抗肿瘤、抗炎症等,是药物开发的良好前体,这是首次在细菌中被分离得到。甲基异靛蓝是我国临床治疗慢性粒细胞白血病的药物,这是首次在微生物发酵液中被分离得到。目前这3个化合物均主要依赖化学合成。本研究结合B9173菌株的代谢背景,推测了3个化合物的生物合成途径。【结论】基于紫外吸收光谱和质谱特征,从B9173菌株的发酵液中分离鉴定了3个2-吲哚酮生物碱,丰富了微生物活性天然产物的种类,对3个化合物生物合成途径的推测也为进一步研究色胺酮和甲基异靛蓝的生物合成机制奠定基础,后续可利用合成生物学技术重构这类化合物的生物合成途径,提供更便捷、低成本的生物合成方法。  相似文献   

14.
Marine cyanobacteria are a rich source of complex bioactive secondary metabolites which derive from mixed biosynthetic pathways. Recently, several marine cyanobacterial natural products have garnered much attention due to their intriguing structures and exciting anti-proliferative or cancer cell toxic activities. Several other recently discovered secondary metabolites exhibit insightful neurotoxic activities whereas others are showing pronounced anti-inflammatory activity. A number of anti-infective compounds displaying activity against neglected diseases have also been identified, which include viridamides A and B, gallinamide A, dragonamide E, and the almiramides.  相似文献   

15.
Nonribosomal peptides (NRPs) are a class of microbial secondary metabolites that have a wide variety of medicinally important biological activities, such as antibiotic (vancomycin), immunosuppressive (cyclosporin A), antiviral (luzopeptin A) and antitumor (echinomycin and triostin A) activities. However, many microbes are not amenable to cultivation and require time-consuming empirical optimization of incubation conditions for mass production of desired secondary metabolites for clinical and commercial use. Therefore, a fast, simple system for heterologous production of natural products is much desired. Here we show the first example of the de novo total biosynthesis of biologically active forms of heterologous NRPs in Escherichia coli. Our system can serve not only as an effective and flexible platform for large-scale preparation of natural products from simple carbon and nitrogen sources, but also as a general tool for detailed characterizations and rapid engineering of biosynthetic pathways for microbial syntheses of novel compounds and their analogs.  相似文献   

16.
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.  相似文献   

17.
Phosphonic acids encompass a common yet chemically diverse class of natural products that often possess potent biological activities. Here we report that, despite the significant structural differences among many of these compounds, their biosynthetic routes contain an unexpected common intermediate, 2-hydroxyethyl-phosphonate, which is synthesized from phosphonoacetaldehyde by a distinct family of metal-dependent alcohol dehydrogenases (ADHs). Although the sequence identity of the ADH family members is relatively low (34-37%), in vitro biochemical characterization of the homologs involved in biosynthesis of the antibiotics fosfomycin, phosphinothricin tripeptide, and dehydrophos (formerly A53868) unequivocally confirms their enzymatic activities. These unique ADHs have exquisite substrate specificity, unusual metal requirements, and an unprecedented monomeric quaternary structure. Further, sequence analysis shows that these ADHs form a monophyletic group along with additional family members encoded by putative phosphonate biosynthetic gene clusters. Thus, the reduction of phosphonoacetaldehyde to hydroxyethyl-phosphonate may represent a common step in the biosynthesis of many phosphonate natural products, a finding that lends insight into the evolution of phosphonate biosynthetic pathways and the chemical structures of new C-P containing secondary metabolites.  相似文献   

18.
具有广泛生物活性的真菌聚酮化合物因具有复杂的化学结构,其生物合成途径一般包含多样且新颖的酶催化反应。文中主要综述了2013-2016年来源于还原性聚酮合成酶(HR-PKSs)、非还原性聚酮合成酶(NR-PKSs)、聚酮-非核糖体多肽合成酶(PKS-NRPSs)和还原性-非还原性聚酮合成酶(HR-NR PKSs)杂合型等四大类型的真菌聚酮类化合物的生物合成研究进展。众多真菌聚酮类化合物生物机理的阐明,为未来新型真菌聚酮类天然产物生物合成基因簇的挖掘、新结构化合物的发现及其类似物的研究提供了方向和理论基础。  相似文献   

19.
The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high-value products.  相似文献   

20.
Polyketides are one of the largest groups of natural products produced by bacteria, fungi, and plants. Many of these metabolites have highly complex chemical structures and very important biological activities, including antibiotic, anticancer, immunosuppressant, and anti-cholesterol activities. In the past two decades, extensive investigations have been carried out to understand the molecular mechanisms for polyketide biosynthesis. These efforts have led to the development of various rational approaches toward engineered biosynthesis of new polyketides. More recently, the research efforts have shifted to the elucidation of the three-dimentional structure of the complex enzyme machineries for polyketide biosynthesis and to the exploitation of new sources for polyketide production, such as filamentous fungi and marine microorganisms. This review summarizes our general understanding of the biosynthetic mechanisms and the progress in engineered biosynthesis of polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号