首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
全球大气二氧化碳浓度升高对植物的影响   总被引:14,自引:0,他引:14  
全球大气二氧化碳浓度升高对植物的影响蒋高明(中国科学院植物研究所,北京100044)THEIMPACTOFGLOBALINCREASINGOFCO_2ONPLANTSJiaingGao-ming(InstituteofBotany,Academia,...  相似文献   

2.
KF核及B(o)tzinger复合体内GABA能神经元向膈神经核的投射   总被引:2,自引:0,他引:2  
Song G  Li Q  Shao FZ 《生理学报》2000,52(2):167-169
实验在6只成年猫上进行。将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及GABA免疫组织化学FITC荧光双重标记方法,研究了脑干内GABA能神经元向膈神经核的投射。结果在脑桥KF核和面神经后核周围区(即Botzinger复合体)观察到GABA-HRP双标神经元。另外,在中缝大核、旁巨细胞外侧核及前庭神经核也观察到双标神经元。本实验结果表明:发自上述脑干神经核团,特别是KF核及Botzinge  相似文献   

3.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

4.
本工作目的是在离体大鼠肠系膜动脉床灌流模型上,观察几种常见炎症介质:前列腺素E2(PGE2)、缓激肽(BK)、组胺(HIS)、血小板活化因子(PAF)及5-羟色胺(5-HT)对血管周围感觉神经介质CGRP释放的直接影响。结果显示:PGE2(1-100μmol/L)和BK(5-10μmol/L)能引起大鼠肠系膜动脉床时间和浓度依赖性地释放CGRP。HIS,PAF和5-HT则未见明显作用。结果提示,PGE2与BK可能是引起血管周围感觉神经兴奋和CGRP释放的主要炎症介质。  相似文献   

5.
DDPH[1-(2.6-二甲基苯乙氧基)-2-(3.4二甲氧基苯乙胺基)丙烷盐酸盐]是南京药科大学合成的降压新化合物,也具有降低肺动脉高压和抑制肺动脉平滑肌细胞增殖作用。本实验用细胞培养、免疫细胞化学、图像分析、3H-TdR、细胞周期测定等方法,进一步探讨DDPH对缺氧性肺动脉平滑肌细胞(PASMCS)增殖的抑制机制。结果:缺氧促进肺动脉内皮细胞(PAECs)的PDGF·BB和bFGF两种生长因子的表达(积分光密度OD值)增高。缺氧内皮细胞条件培养液(HECCM)能促进PASMCS的PDGF·BB的OD值增高,bFGF的OD值无明显改变。加药组(HEC-CM+DDPH)的PDGF·BB和bFGF的OD值均显著降低,尤以PDGF·BB的OD值减少最多.提示:DDPH能抑制HECCM引起PASMCS的PDGF·BB和bFGF表达增多和细胞增殖。结果与大鼠实验观察相符。  相似文献   

6.
杏仁核内注射CCK—8抑制胃运动的机制   总被引:3,自引:0,他引:3  
唐明  苏海灵 《生理学报》1997,49(5):569-574
应用脑核团内微量注射和核团电刺激方法,观察杏仁基底内侧(BMA)对胃运动的影响,分析BMA与下丘脑腹内侧核(VMH)的机能联系。结果如下:(1)双侧BMA内注射八肽胆囊收缩素(CCK-8)(50ng/lμl),出现胃内压(IGP)和胃运动频率(GMF)显著下降(P〈0.01)。(2)BMA内注射CCK-A受体阻断剂[L364,718](100ng/lμl)或CCK-B受体阻断剂[L365,260]  相似文献   

7.
Shen LM  Chen YC 《生理学报》2000,52(1):22-28
用细胞外记录的方法研究了猕猴在执行图形辨认引导的有序运动(FRS)时大脑皮层弓形沟距周围背外侧运动前皮层(PMd)F2区和腹外侧运动前皮层(PMv)F4区的放电活动在FRS的暗示期,F2和F4区中分别有52%(39/75)和16.9%(13/77)的细胞发生放电变化;在触摸反应期,各有51%(38/75)和87%(67/77)的细胞发生放电变化,经统计检验,均有显著差异。F2区比F4区有更多细胞对  相似文献   

8.
CRF在谷氨酸兴奋中央杏仁核引起的升压反应中之作用   总被引:9,自引:0,他引:9  
促肾上腺皮质激素释放因子(CRF)能神经元的胞体和轴突末梢广泛分布在中央杏仁核(AC)及其投射的重要升压区。本工作显示:(1)谷氨酸兴奋AC或将CRF分别注入AC投射区:室旁核(NPV)、外侧下丘脑/穹窿周围区(LH/PF)、蓝斑(LC)、臂旁核(NPB)、中脑导水管周围灰质(PAG)或延髓头端腹外侧区(RVL)均引起升压反应;(2)AC的上述投射区内预先分别注入α-HelicalCRF[9-41](CRF拮抗剂)均能阻断谷氨酸兴奋AC引起的升压反应。以上结果结合以往报道:LH/PF也有纤维投射至LC、NPB和PAG,后三者均可通过RVL引起升压反应,表明AC发出的CRF能投射纤维一方面可兴奋NPV,另一方面则可间接(通过LH/PF)或直接作用于LC、NPB和PAG,进而激活RVL-交感兴奋神经元,也可能直接兴奋RVL而引起升压反应  相似文献   

9.
通过基因工程操作,使乙型肝炎病毒e抗原(HBeAg)基因与绿色荧光蛋白基因(GFP)融合,用新型Bac-to-Bac杆状病毒表达系统在昆虫细胞中高效表达了HBeAg-GFP双功能融合蛋白。经ELISA法和荧光显微镜观察证实,表达产物既能发射易于检测的绿色荧光,又具有HBV的e抗原活性,为免疫诊断新方法的建立进行了有益的探索  相似文献   

10.
岳莉莉  齐义鹏 《病毒学报》1998,14(3):234-239
通过基因工程操作,使乙型肝炎病毒e抗原(HBeAg)基因与绿色荧光蛋白基因(GFP)融合,用新型Bac-to-Bac杆状病毒表达系统在昆虫细胞中高效表达了HBeAg-GFP双功能融合蛋白。经ELISA法和荧光显微镜观察证实,表达产物既能发射易于检测的绿色荧光,又具有HBV的e抗原活性,为免疫诊断新方法的建立进行了有益的探索。  相似文献   

11.
Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks.  相似文献   

12.
猴运动前区皮层神经元在顺序行为中的放电活动   总被引:3,自引:3,他引:0  
Chen YC  Huang FD  Chen NH  Shou JY  Wu L 《生理学报》1998,50(2):121-131
本工作猴运动前区(PM)皮层神经元在视觉图表引导的有序运动行为中的放电活动,并在与记忆信息完成的空间顺序行为(MSS)中的活动作了比较。为为训练三只猴同时学会FRS和MSS任务。对111个神经元的统计分析表明,它们在FRMS和MSS暗示期中发生放电频率变化的均有一半以上。反应期里有放电频率变化的比例也很高;图形期里,FRS中的比例比MSS中的高出很多。它们对不同运动顺序呈现明显的选择性。对在动物完  相似文献   

13.
衰老对大鼠脑区氨基酸水平的影响   总被引:4,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

14.
Johnston K  Levin HM  Koval MJ  Everling S 《Neuron》2007,53(3):453-462
The prefrontal cortex (PFC) and anterior cingulate cortex (ACC) have both been implicated in cognitive control, but their relative roles remain unclear. Here we recorded the activity of single neurons in both areas while monkeys performed a task that required them to switch between trials in which they had to look toward a flashed stimulus (prosaccades) and trials in which they had to look away from the stimulus (antisaccades). We found that ACC neurons had a higher level of task selectivity than PFC neurons during the preparatory period on trials immediately following a task switch. In ACC neurons, task selectivity was strongest after the task switch and declined throughout the task block, whereas task selectivity remained constant in the PFC. These results demonstrate that the ACC is recruited when cognitive demands increase and suggest a role for both areas in task maintenance and the implementation of top-down control.  相似文献   

15.
Russ BE  Orr LE  Cohen YE 《Current biology : CB》2008,18(19):1483-1488
The detection of stimuli is critical for an animal's survival [1]. However, it is not adaptive for an animal to respond automatically to every stimulus that is present in the environment [2-5]. Given that the prefrontal cortex (PFC) plays a key role in executive function [6-8], we hypothesized that PFC activity should be involved in context-dependent responses to uncommon stimuli. As a test of this hypothesis, monkeys participated in a same-different task, a variant of an oddball task [2]. During this task, a monkey heard multiple presentations of a "reference" stimulus that were followed by a "test" stimulus and reported whether these stimuli were the same or different. While they participated in this task, we recorded from neurons in the ventrolateral prefrontal cortex (vPFC; a cortical area involved in aspects of nonspatial auditory processing [9, 10]). We found that vPFC activity was correlated with the monkeys' choices. This finding demonstrates a direct link between single neurons and behavioral choices in the PFC on a nonspatial auditory task.  相似文献   

16.
The levels of inhibitory amino acids (Tau, Gly), or excitatory amino acids (Glu, Asp) and Gln, precursor of GABA, have been determined, under resting conditions, in 17 brain areas of 3 sublines of inbred Rb mice displaying different responses to an acoustic stimulus. Rb1 mice were clonictonic seizure-prone, Rb2 mice were clonic seizure-prone and Rb3 mice were seizure resistant. Profile of distribution in the brain of each one of these amino acids differed. Maximum to minimum level ratio was higher for Tau (3.8) than for Glu or Asp or Gln (2). The level of Gly was similar in 13 out of the 17 areas examined. Multiple inter-subline differences were recorded for each amino acid. These differences have been analyzed considering the seizure susceptibility or severity of the three Rb sublines. Common lower levels (approximately –20%: Rb1/Rb3, Rb2/Rb3) of Gln in Temporal Cortex may be implicated in seizure susceptibility. Seirure severity (Rb1/Rb2) seems to correlate, in some areas, with additional lower amounts of GABA already reported and, to a lower extent, of Asp (–19% in striatum, inferior colliculus and cerebellum), of Tau and Gly; a tendency for a rise in Gln content was observed in certain others (10–20% in olfactory bulb, thalamus, hypothalamus, substantia nigra, and frontal, temporal and occipital cortex). The data and correlations recorded provide guidelines for further investigations for synaptosomal and metabolic alterations in the three sublines of the same strain of Rb mice.Abbreviations used GABA 4-aminobutyrate - Tau taurine - Gly glycine - Asp aspartate - Glu glutamate - Gln glutamine - GEPR genetically epilepsy-prone rat - OB olfactory bulbs - OT olfactory tubercles - Sr striatum - Se septum - Hy hypothalamus - Hi hippocampus - Th thalamus - A amygdala - SC superior colliculus - IC interior colliculus - SN substantia nigra - FCx frontal cortex - TCx temporal cortex - OCx occipital cortex - C cerebellum - P pons - Ra raphe  相似文献   

17.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Several areas of the brain are known to participate in temporal processing. Neurons in the prefrontal cortex (PFC) are thought to contribute to perception of time intervals. However, it remains unclear whether the PFC itself can generate time intervals independently of external stimuli. Here we describe a group of PFC neurons in area 9 that became active when monkeys recognized a particular elapsed time within the range of 1-7 seconds. Another group of area 9 neurons became active only when subjects reproduced a specific interval without external cues. Both types of neurons were individually tuned to recognize or reproduce particular intervals. Moreover, the injection of muscimol, a GABA agonist, into this area bilaterally resulted in an increase in the error rate during time interval reproduction. These results suggest that area 9 may process multi-second intervals not only in perceptual recognition, but also in internal generation of time intervals.  相似文献   

19.
Cohen MX 《Current biology : CB》2011,21(22):1900-1905
The hippocampus and prefrontal cortex interact to support working memory (WM) and long-term memory [1-3]. Neurophysiologically, WM is thought to be subserved by reverberatory activity of distributed networks within the prefrontal cortex (PFC) [2, 4-8], which become synchronized with reverberatory activity in the hippocampus [1, 4]. This electrophysiological synchronization is difficult to study in humans because noninvasive electroencephalography (EEG) cannot measure hippocampus activity. Here, using a novel integration of EEG and diffusion-weighted imaging, it is shown that individuals with relatively stronger anatomical connectivity linking the hippocampus to the right ventrolateral PFC (ventral Brodmann area 46) exhibited slower frequency neuronal oscillations during a WM task. Furthermore, subjects with stronger hippocampus-PFC connectivity were better able to encode the complex pictures used in the WM task into long-term memory. These findings are consistent with models suggesting that electrophysiological oscillations provide a mechanism of long-range interactions [9] and link hippocampus-PFC structural connectivity to PFC rhythmic electrical dynamics and memory performance. More generally, these results highlight the importance of incorporating individual differences when linking structure and function to cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号