首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

2.
囊泡运输是真核细胞内细胞器间物质交流的重要手段,主要包括出芽、转运、拴系及膜融合四个环节.拴系因子调控运输囊泡与靶膜的初始接触,建立两者间的连接,并能够促进SNARE介导的膜融合过程.Exocyst是一个保守的八亚基拴系复合体,主要在胞吐过程中介导囊泡与细胞质膜的拴系过程.本文主要介绍exocyst复合体的结构和组装机...  相似文献   

3.
膜泡运输是不同细胞器间进行物质传递的基本方式,分为4个重要步骤:囊泡的出芽、转运、拴系和融合。在此过程中,有许多相关因子参与调控,如包被蛋白、Rab蛋白、拴系因子、SM蛋白和SNARE等。拴系因子在运输囊泡和靶位膜发生接触的最初阶段起重要调控作用,多数拴系因子形成大的多亚基复合体发挥功能。目前,关于拴系因子的功能已经有了一定的了解,在此,我们对酵母、哺乳动物以及植物细胞中的已知拴系因子的特点和功能进行了概述。  相似文献   

4.
在真核细胞中,囊泡介导的蛋白质转运是一个高度可控的多步骤过程。在囊泡与靶细胞器膜成分融合之前,许多因子参与了它们之间的特异性识别和拴系。其中大部分由多亚基复合体或卷曲螺旋蛋白构成的拴系因子,在小G蛋白的协助下,介导了囊泡与靶细胞器膜成分之间最初的结合。转运蛋白颗粒(transport protein particle,TRAPP)复合体就是一种广泛参与囊泡在细胞内转运的多亚基拴系因子。本文将就TRAPP复合体结构与功能的最新研究进展及与TRAPP复合体基因突变相关疾病做一简单综述和总结。  相似文献   

5.
胞吐是存在于所有真核生物的一种极其重要的细胞活动,直接参与了激素和神经信号的分泌、细胞生长、细胞极性的建立,细胞分裂和细胞壁的形成等多项生理过程。在胞吐过程中,高尔基后转运膜泡与靶膜的识别是由进化上高度保守的胞泌复合体(exocyst)介导的。该复合体由8个蛋白亚基构成,其中EXO70是组成胞泌复合体功能的关键亚基,可与小G蛋白和膜脂互作,参与复合体在靶膜组装。目前,对植物胞泌复合体功能的了解非常有限,已有证据显示其广泛参与了细胞生长,细胞壁形成、细胞分裂等多种生物学过程。与酵母和动物相比,植物胞泌复合体的一个显著特征是:EXO70在高等植物基因组中存在多个同源基因,其具体生物学功能尚不清楚。本文综述胞泌复合体的研究进展,重点讨论植物EXO70的多基因家族,推测不同的EXO70可能参与了组织细胞或运载底物特异的膜泡转运过程。  相似文献   

6.
真核细胞中的物质交流是通过膜泡运输完成的。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留、锚定和膜融合过程。其中,拴留过程是运输囊泡和靶膜最初的接触。在此过程中,有许多因子参与调控,如拴留因子、小GTPase、SNARE蛋白等。GARP(golgi-associated retrograde protein)复合体是内涵体到高尔基体反面网状结构(TGN)逆行运输过程中的拴留因子。目前,关于GARP复合体的组成和功能已经有了一定的了解,本文将对GARP复合体的最新研究进展进行概述。  相似文献   

7.
Exo70是胞外分泌复合体(exocyst)中的关键亚基,广泛存在于酵母、哺乳动物和植物中。在酵母和哺乳动物细胞的胞外分泌过程中,Exo70介导运输囊泡与目的质膜的锚定与融合过程。除此之外,在哺乳动物细胞中,Exo70还参与细胞迁移、细胞连接构建等过程,并参与调节exocyst复合体的装配。对Exo70的结构研究表明,不同物种Exo70在结构上存在一定差异,其功能的差异可能与其结构密切相关。在结构、定位及功能等方面对Exo70的研究进展进行综述,将为全面了解Exo70在细胞中的功能提供参考。  相似文献   

8.
随着高等生物中十几个新的参与囊泡运输的 Hermansky-Pudlak 综合征(HPS)蛋白质的发现, 认为可能存在一类新的囊泡运输通路。该通路主要由新近鉴定的 3 个被称为溶酶体相关细胞器生物发生复合体(BLOC)所组成, 被分别命名为BLOC-1、BLOC-2 和 BLOC-3。越来越多的证据表明这些复合体与以前认识较清楚的 AP3 和 HOPS 复合体共同在胞内体运输中起重要作用。这些复合体之间的相互作用构成了以胞内体和细胞骨架为连接纽带的参与蛋白质运输的复杂网络。该网络中的每个节点的相互作用可区分为复合体内和复合体外相互作用两大类。复合体之间的联系可以是来自不同复合体亚基间的直接相互作用, 也可以通过耦联的节点联结不同的复合体。解析这一复杂网络有助于进一步了解参与蛋白质和膜运输这一动态而精细网络的结构与功能。一旦该网络结构得到破坏, 则可能导致如 HPS 这类囊泡运输或细胞器发生障碍性疾病。  相似文献   

9.
胞吐作用是真核生物最基本的细胞活动之一,广泛参与了有机体内的多种生理过程.Exocyst复合体介导的分泌囊泡在质膜的定向栓系以及SNARE(soluble N-ethylmaleimide-sensitive factor attachment protein receptor)蛋白介导的分泌囊泡与质膜的融合过程是胞吐...  相似文献   

10.
GLUT4在胰岛素调控葡萄糖转运中作用   总被引:1,自引:0,他引:1  
机体的血糖平衡调节主要依赖于胰岛素,其中一个重要的机制是胰岛素通过调控GLUT4的囊泡运转来调节脂肪细胞和肌细胞对葡萄糖的摄取。由胰岛素受体介导的一系列磷酸化过程能调节一些关键的GLUT4转运相关蛋白质的活性,这些蛋白质包括小GTP酶、拴系复合体和囊泡融合体。而这些蛋白质又反过来通过内膜系统调节GLUT4储存囊泡的生成、滞留,并调控这些囊泡的靶向出胞方式。了解这些过程有助于解释2型糖尿病中胰岛素耐受的机制,并可能为糖尿病提供新的靶向治疗方法。  相似文献   

11.
The exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants investigated to date. Although the plant exocyst has not been studied in great detail, it is likely that the basic function of the exocyst in vesicle tethering is conserved. Nevertheless, genomic and genetic studie...  相似文献   

12.
The Plant Exocyst   总被引:1,自引:0,他引:1  
The exocyst is an octameric vesicle tethering complex that func-tions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants investigated to date. Although the plant exocyst has not been studied in great detail, it is likely that the basic function of the exocyst in vesicle tethering is conserved. Nevertheless, genomic and genetic studies suggest that the exocyst complex in plants may have more diversified roles than that in budding yeast. In this review, we compare the knowledge about the exocyst in plant cells to the well-studied exocyst in budding yeast, in order to explore similarities and differences in expression and function between these organisms, both of which have walled cells.  相似文献   

13.
Exorcising the exocyst complex   总被引:1,自引:0,他引:1  
The exocyst complex is an evolutionarily conserved multisubunit protein complex implicated in tethering secretory vesicles to the plasma membrane. Originally identified two decades ago in budding yeast, investigations using several different eukaryotic systems have since made great progress toward determination of the overall structure and organization of the eight exocyst subunits. Studies point to a critical role for the complex as a spatiotemporal regulator through the numerous protein and lipid interactions of its subunits, although a molecular understanding of exocyst function has been challenging to elucidate. Recent progress demonstrates that the exocyst is also important for additional trafficking steps and cellular processes beyond exocytosis, with links to development and disease. In this review, we discuss current knowledge of exocyst architecture, assembly, regulation and its roles in a variety of cellular trafficking pathways.  相似文献   

14.
Structural analysis of conserved oligomeric Golgi complex subunit 2   总被引:2,自引:0,他引:2  
The conserved oligomeric Golgi (COG) complex is strongly implicated in retrograde vesicular trafficking within the Golgi apparatus. Although its mechanism of action is poorly understood, it has been proposed to function by mediating the initial physical contact between transport vesicles and their membrane targets. An analogous role in tethering vesicles has been suggested for at least six additional large multisubunit complexes, including the exocyst, a complex essential for trafficking to the plasma membrane. Here we report the solution structure of a large portion of yeast Cog2p, one of eight subunits composing the COG complex. The structure reveals a six-helix bundle with few conserved surface features but a general resemblance to recently determined crystal structures of four different exocyst subunits. This finding provides the first structural evidence that COG, like the exocyst and potentially other tethering complexes, is constructed from helical bundles. These structures may represent platforms for interaction with other trafficking proteins including SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) and Rabs.  相似文献   

15.
《Journal of molecular biology》2019,431(15):2821-2834
During autophagy, double-membrane vesicles called autophagosomes capture and degrade the intracellular cargo. The de novo formation of autophagosomes requires several vesicle transport and membrane fusion events which are not completely understood. We studied the involvement of exocyst, an octameric tethering complex, which has a primary function in tethering post-Golgi secretory vesicles to plasma membrane, in autophagy. Our findings indicate that not all subunits of exocyst are involved in selective and general autophagy. We show that in the absence of autophagy specific subunits, autophagy arrest is accompanied by accumulation of incomplete autophagosome-like structures. In these mutants, impaired Atg9 trafficking leads to decreased delivery of membrane to the site of autophagosome biogenesis thereby impeding the elongation and completion of the autophagosomes. The subunits of exocyst, which are dispensable for autophagic function, do not associate with the autophagy specific subcomplex of exocyst.  相似文献   

16.
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.  相似文献   

17.
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity. The Rab and Ral GTPases are thought to function in exocyst assembly and vesicle-tethering processes, whereas the Rho family GTPases seem to function in the local activation of the exocyst complex to facilitate downstream vesicle-fusion events. The localized activation of the exocyst by Rho GTPases is likely to have an important role in spatial regulation of exocytosis.  相似文献   

18.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   

19.
Small GTPases are key intermediates that operate at the crossroads of signaling and trafficking. During insulin-stimulated glucose transport, activation of the vesicular-localized small GTPase RalA leads to its engagement with the vesicle tethering exocyst complex, mediating the plasma membrane targeting of Glut4 vesicles. Activation of RalA is achieved via inhibition of the Ral GAP Complex (RGC), comprised of the regulatory subunit RGC1 and the catalytic subunit RGC2. RGC1/2 share homology with the Rheb GAP complex TSC1/2 and can also be inactivated by Akt-catalyzed phosphorylation to produce RalA activation and exocyst engagement. Disengagement between the GTPase and the exocyst occurs through phosphorylation of its effector Sec5 in its Ral-binding domain, thus allowing continuation of exocytic program and recycling of the tether. Phosphorylation of Sec5 is catalyzed by protein kinase C (PKC) and can be reversed by an exocyst-associated phosphatase activity. Therefore, integration of the GTPase cycle and the phosphorylation cycle orchestrates the engagement-disengagement switch between Ral GTPases and the effector exocyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号