首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

2.

In temperate oak forests in Ohio, USA, we examined variability in forest communities within containment treatment sites for oak wilt (Bretziella fagacearum), a fungal pathogen lethal to susceptible oak species. Containment treatments included quarantine lines in soil for limiting belowground fungal spread and sanitation cutting of 1–3 mature black oak (Quercus velutina) trees within oak wilt infection patches. At 28 sites, we compared tree structure and understory plant communities across a gradient of 1- to 6-year-old treatments and reference forest (untreated and without evidence of oak wilt). While oak seedlings were abundant, oak saplings (1–10 cm in diameter) were absent. In contrast, many native understory plant community measures were highest in oak wilt treatments. Plant species richness 100 m?2 doubled in treatments, regardless of age, compared with reference forest. Plant cover increased with treatment age, with 6-year-old treatments exhibiting 5?×?more cover than reference forest. Non-native plants averaged only a small proportion (<?0.12) of cover across treatments and reference forest. Variability in understory communities was mostly predictable using treatment age, tree canopy cover, and geographic location, as 20 of 25 understory measures had at least 72% of their variance modeled. While oak wilt treatments did not facilitate oak regeneration nor many conservation-priority species of open savanna-woodland habitats, the treatments did diversify and increase cover of native understory communities with minimal invasion of non-native plants.

  相似文献   

3.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

4.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

5.
The community structures of Mesostigmata, Prostigmata, and Oribatida in the soil of broad-leaved regeneration forests and conifer plantations of various ages were assessed alongside soil and plant environmental variables using three response metrics (density, species richness, and species–abundance distribution). The density and species richness of mites recovered swiftly after clear-cutting or replanting. Oribatid mites dominated the soil mite communities in terms of densities and species richness for both forest types. Soil mite communities in broad-leaved forests was related to forest age, the crown tree communities index, and forest-floor litter weight. In contrast, soil mite communities in the conifer plantation sites were related to various indices of understory plants. The development of the understory plants was synchronized with the silvicultural schedules, including a closed canopy and thinning. Such a conifer plantation management may affect indirectly the community of mites.  相似文献   

6.
调查了内蒙古草原化荒漠区3种锦鸡儿[垫状锦鸡儿(Caragana tibetica)、荒漠锦鸡儿(C.roborovskyi)和狭叶锦鸡儿(C.stenophylla)]灌丛内、外土壤线虫群落多样性、组成和代谢足迹,以及相关的土壤理化性质和植物群落特征,旨在探讨锦鸡儿属灌丛对土壤线虫群落的影响,并分析这种影响是否具有灌木种间差异,同时从线虫功能团水平上探究灌丛如何通过非生物因素和生物因素影响线虫群落组成。结果表明:锦鸡儿属灌丛对土壤线虫多度、丰富度和多样性无显著影响,但却显著影响土壤线虫群落组成。原因是灌丛对土壤线虫群落具有物种选择性;灌丛可能主要是通过根系分泌物、凋落物质量等因素,而不是通过土壤理化性质和林下植物影响线虫群落组成。土壤线虫组成的变化引起线虫代谢足迹发生明显变化。灌丛内土壤线虫功能代谢足迹大于灌丛外(除狭叶锦鸡儿外),说明灌丛内土壤线虫群落对碳的利用率更高。3种锦鸡儿属灌木中,狭叶锦鸡儿的结构代谢足迹最大,表明狭叶锦鸡儿对捕食杂食类线虫代谢活性的促进作用更强。土壤线虫组成的变化通过线虫代谢足迹导致土壤食物网结构发生显著性变化。狭叶锦鸡儿灌丛土壤干扰程度低,营养富集状况好...  相似文献   

7.
Ahistorical drivers such as nonnative invasive earthworms and high deer densities can have substantial impacts on ecosystem processes and plant community composition in temperate and boreal forests of North America. To assess the roles of earthworm disturbance, deer, and environmental factors in the understory, we sampled 125 mixed temperate-boreal forest sites across the western Great Lakes region. We utilized structural equation modeling (SEM) to address the hypothesis that earthworm disturbance to the upper soil horizons and selective herbivory by deer are associated with depauperate understory plant communities dominated by graminoid and nonnative species. Evidence of earthworm activity was found at 93 % of our sites and 49 % had high to very high severity earthworm disturbance. The SEM fit the data well and indicated that widespread nonnative earthworm disturbance and high deer densities had similar magnitudes of impact on understory plant communities and that these impacts were partially mediated by environmental characteristics. One-third of the variation in earthworm disturbance was explained by soil pH, precipitation, and litter quality. Deer density and earthworm disturbance both increased graminoid cover while environmental variables showed direct and indirect relationships. For example, the positive relationship between temperature and graminoids was indirect through a positive temperature effect on deer density. This research characterizes an integrated set of key environmental variables driving earthworm disturbance and deer impacts on the forest understory, facilitating predictions of the locations and severity of future change in northern temperate and boreal forest ecosystems.  相似文献   

8.
9.
长白山森林/沼泽生态交错带群落和环境梯度分析   总被引:29,自引:6,他引:23  
揭示了森林-沼泽过渡带群落的结构、生产力、植物多样性等群落梯度和交错环境梯度的相关规律,并结合交错区环境梯度分析这些群落特征形成机制,为维持、保护与经营管理这一交错带生物资源提供了理论依据。将长白山地区森林和高、中、低位沼泽所形成的三大类型过渡带研究对象,采用样带网格的调查方法,并应用系统软件分析方法建立了经验回归模型,研究了森林/沼泽生态交错带群落的种类组成、群落建群种径级结构与年龄结构、植物多样性、群落生产力及其随生态交错带环境梯度变化趋势。结果表明,森林/沼泽生态交错带群落结构特征、植物多样性、群落生产力均随着交错带环境梯度的变化而呈现有规律的分布格局,沿着沼泽至森林方向的交错区环境梯度,群落建种种发生更替现象;群落种类数目呈现指数递增趋势;群落的径级结构呈现双曲线分布规律性;年龄结构一般呈三次式分布规律;揿样性呈二次式梯增分布趋势;群落生物量均呈现三次函数曲线递增趋势,表现出群落梯度和环境梯度的高度相关性。  相似文献   

10.
Abstract. Treefalls are a common form of disturbance in northeastern United States forests. The resultant gaps contribute to a high degree of environmental heterogeneity in the understory of these forests. Plant density, plant cover, and species richness in understory plant communities were monitored for three years during the growing season, May - September. Differences between treefall gap and closed canopy vegetation were less pronounced early in the growing season for plant density and leaf cover. Species richness was significantly greater within treefall gaps during the entire growing season. Eight species were found in greater abundance within treefall gaps (i.e., gap-phase species), while one species was found more commonly under closed canopy. Ordination results suggest that time since gap creation and treefall gap size marginally affect the species composition of vegetation found within treefall gaps.  相似文献   

11.
Changes in microclimate, soil physicochemical properties, understory vegetation cover, diversity, and composition as well as soil microbial community resulting from silvicultural practices are expected to alter soil food webs. Here, we investigated whether and how contrasting‐sized canopy openings affect soil nematode community within a 30 year‐aged spruce plantation. The results indicated that the responses of soil nematodes to canopy opening size were dependant on their feeding habit. The abundance of total nematodes and that of free‐living nematodes was negatively correlated with soil bulk density, whereas the abundance of omnivore–predators was negatively correlated with soil bulk density and shrubs cover, respectively. The ratio of the sum abundance of predators and omnivores to the plant parasites’ abundance, Simpson's dominance index, Pielou's evenness index, and sigma maturity index, maturity index (MI), MI2‐5, basal index, enrichment index, and structure index was sensitive to alteration in canopy opening size. Multivariate analysis indicated that thinning‐induced gap size resulted in contrasting nematode assemblages. In conclusion, soil nematodes should be integrated as an indicator to monitor soil multifunctionality change due to thinning.  相似文献   

12.
The effects of climate change on tropical forests may have global consequences due to the forests’ high biodiversity and major role in the global carbon cycle. In this study, we document the effects of experimental warming on the abundance and composition of a tropical forest floor herbaceous plant community in the Luquillo Experimental Forest, Puerto Rico. This study was conducted within Tropical Responses to Altered Climate Experiment (TRACE) plots, which use infrared heaters under free‐air, open‐field conditions, to warm understory vegetation and soils + 4°C above nearby control plots. Hurricanes Irma and María damaged the heating infrastructure in the second year of warming, therefore, the study included one pretreatment year, one year of warming, and one year of hurricane response with no warming. We measured percent leaf cover of individual herbaceous species, fern population dynamics, and species richness and diversity within three warmed and three control plots. Results showed that one year of experimental warming did not significantly affect the cover of individual herbaceous species, fern population dynamics, species richness, or species diversity. In contrast, herbaceous cover increased from 20% to 70%, bare ground decreased from 70% to 6%, and species composition shifted pre to posthurricane. The negligible effects of warming may have been due to the short duration of the warming treatment or an understory that is somewhat resistant to higher temperatures. Our results suggest that climate extremes that are predicted to increase with climate change, such as hurricanes and droughts, may cause more abrupt changes in tropical forest understories than longer‐term sustained warming.  相似文献   

13.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

14.
Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long‐term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss‐associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming‐induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.  相似文献   

15.
Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra‐boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non‐linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.  相似文献   

16.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

17.
Prediction of community response of fauna to anthropogenic or environmental disturbance requires knowledge of faunal distribution and abundance as well as an understanding of the mechanisms underlying community organization. We investigated linkages between Lepidoptera, one of the most influential insect taxa in forested ecosystems, and vegetation in riparian areas of conifer-dominated forests of western Oregon, USA. Using model selection techniques, we found that canopy cover explained variability in patterns of moth species dominance and diversity better than all other factors investigated, whereas elevation best explained patterns of moth species richness. Using canonical correspondence analysis, we determined that gradients in shrub species richness, elevation, and understory species richness accounted for the most variation in regional moth community structure. Results suggest that reductions of riparian forest canopy are likely to have the greatest impact on the variety and relative abundance of moths. Due to the relative rarity and patchy distribution of the majority of individual species, we predict that lower intensity vegetation manipulations distributed across larger spatial scales are likely to be less damaging to regional moth biodiversity than more intensive alterations at smaller scales. Finally, if global warming trends continue, upward elevational shifts in moth species distributions will make forested regions at higher elevation worthy of concerted protection.  相似文献   

18.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

19.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

20.
Plant–soil feedbacks have been observed in many forest communities, but the role of the mycorrhizal community in perpetuating feedback loops is still poorly understood. Mycorrhizal community composition is closely linked to soil properties and host plant composition, which highlights their potential importance in plant–soil–fungus loops. Eastern hemlock (hemlock; Tsuga canadensis) seedlings were grown in soil bioassays in growth chambers and transplanted under closed forest canopy to examine the effect of hardwood and hemlock forest soil on seedling growth, survival, and ectomycorrhizal fungi (EMF) colonization. Seedlings propagated in hemlock forest soil had greater height growth compared with sterile control soil and achieved greater mycorrhizal colonization than seedlings grown in hardwood forest soils after 9 months in a growth chamber. Outplanted seedlings grown in hemlock communities achieved significantly greater increment growth than those seedlings grown in hardwood communities (mean height difference (95% CI)?=?0.39 cm (0.14–0.63 cm)), although final survival and EMF colonization was similar between forest types. EMF diversity (Shannon-Wiener index (SE)?=?1.88 (0.28) and 1.23 (0.44) for hardwood and hemlock, respectively) and community assemblage (Jaccard index (SE)?=?19.0% (4%)) differed between the two forest communities. EMF community assemblage was associated with both the forest type (i.e. plant community/microsite effects) and initial soil type (i.e. soil characteristics/resistant inoculum). The results support previously observed positive feedbacks between conspecifics under hemlock forest communities and provides evidence for the role of the EMF community within this feedback loop. Alternatively, the reduced growth of hemlocks under hardwoods may be attributed to the different EMF community associated with that forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号