首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated elevational richness patterns of three moth groups (Erebidae, Geometridae, and Noctuidae) along four elevational gradients located on one northern and three southern mountains in South Korea, as well as the effects of plants and climatic factors on the diversity patterns of moths. Moths were collected with an ultraviolet light trap at 32 sites from May through October, 2013. Plant species richness and mean temperatures for January and June were acquired. Observed and estimated moth species richness was calculated and the diversity patterns with null models were compared. Species richness along four elevational gradients peaked at mid-elevations, whereas deviations occurred at elevations below mid-peak in the southern mountains and elevations higher than mid-peak on the northern mountain. Species richness curves of three moth groups also peaked at mid-elevations throughout South Korea. However, the species richness curves for Erebidae were positively skewed, indicating that a preference for lowlands, whereas curves of the Geometridae were negatively skewed, indicating a preference for highlands. The mid-peak diversity pattern between plants and moths on the Korean mountains showed an elevational breadth that overlapped between 800 and 900 m. Multiple regression analysis revealed that plant species richness and January mean temperature significantly influenced moth species richness and abundance. The rapid increase in mean annual temperature in the Korean peninsula and the unimodal elevational gradients of moths across the country suggest that an uphill shift in peak optimum elevation and changes in the highest peak of the curve will occur in the future.  相似文献   

2.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

3.
The distribution of species on mountains has been related to various predictor variables, especially temperature. Thermal specialization—presumed to be more pronounced on tropical mountains than on temperate mountains—accounts for the elevational pattern of species richness and varies between organisms and geographic areas. In this study, the elevational and regional distribution patterns of 331 epiphyte species in Taiwan were explored using 39,084 botanic collections, mostly from herbaria. Species richness showed a peak in elevation at 500–1500 m. This peak could not be explained by a null model, the mid‐domain effect, suggesting that environmental variables accounted mostly for the distribution of species on the mountains. Next, species distributions were modeled to assess epiphyte regional and elevational distribution patterns. The model results not only corroborated the position of the mid‐elevation peak in richness, but also identified two mountain areas on the island with exceptionally high species richness. These areas of high epiphyte diversity coincide with areas of high rainfall in relation to the direction of the prevailing winds. Moreover, a subsequent exploratory ordination analysis showed a varied thermal preference between epiphyte subcategories (hemiepiphytes, dicotyledons, orchids, and ferns). In contrast to predictions by the elevational Rapoport's rule, ordination analysis also showed that the degree of thermal specialization increased with elevation, suggesting that highland species may be especially vulnerable to global warming.  相似文献   

4.

Aim

The exceptional turnover in biota with elevation and number of species coexisting at any elevation makes tropical mountains hotspots of biodiversity. However, understanding the historical processes through which species arising in geographical isolation (i.e. allopatry) assemble along the same mountain slope (i.e. sympatry) remains a major challenge. Multiple models have been proposed including (1) the sorting of already elevationally divergent species, (2) the displacement of elevation upon secondary contact, potentially followed by convergence, or (3) elevational conservatism, in which ancestral elevational ranges are retained. However, the relative contribution of these processes to generating patterns of elevational overlap and turnover is unknown.

Location

Tropical mountains of Central- and South-America.

Time Period

The last 12 myr.

Major Taxa Studied

Birds.

Methods

We collate a dataset of 165 avian sister pairs containing estimates of phylogenetic age, geographical and regional elevational range overlap. We develop a framework based on continuous-time Markov models to infer the relative frequency of different historical pathways in explaining present-day overlap and turnover of sympatric species along elevational gradients.

Results

We show that turnover of closely related bird species across elevation can predominantly be explained by displacement of elevation ranges upon contact (81%) rather than elevational divergence in allopatry (19%). In contrast, overlap along elevation gradients is primarily (88%) explained by conservatism of elevational ranges rather than displacement followed by elevational expansion (12%).

Main Conclusions

Bird communities across elevation gradients are assembled through a mix of processes, including the sorting, displacement and conservatism of species elevation ranges. The dominant role of conservatism in explaining co-occurrence of species on mountain slopes rejects more complex scenarios requiring displacement followed by expansion. The ability of closely related species to coexist without elevational divergence provides a direct and faster pathway to sympatry and helps explain the exceptional species richness of tropical mountains.  相似文献   

5.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

6.
Aim A global meta‐analysis was used to elucidate a mechanistic understanding of elevational species richness patterns of bats by examining both regional and local climatic factors, spatial constraints, sampling and interpolation. Based on these results, I propose the first climatic model for elevational gradients in species richness, and test it using preliminary bat data for two previously unexamined mountains. Location Global data set of bat species richness along elevational gradients from Old and New World mountains spanning 12.5° S to 38° N latitude. Methods Bat elevational studies were found through an extensive literature search. Use was made only of studies sampling  70% of the elevational gradient without significant sampling biases or strong anthropogenic disturbance. Undersampling and interpolation were explicitly examined with three levels of error analyses. The influence of spatial constraints was tested with a Monte Carlo simulation program, Mid‐Domain Null. Preliminary bat species richness data sets for two test mountains were compiled from specimen records from 12 US museum collections. Results Equal support was found for decreasing species richness with elevation and mid‐elevation peaks. Patterns were robust to substantial amounts of error, and did not appear to be a consequence of spatial constraints. Bat elevational richness patterns were related to local climatic gradients. Species richness was highest where both temperature and water availability were high, and declined as temperature and water availability decreased. Mid‐elevational peaks occurred on mountains with dry, arid bases, and decreasing species richness occurred on mountains with wet, warm bases. A preliminary analysis of bat richness patterns on elevational gradients in western Peru (dry base) and the Olympic Mountains, WA (wet base), supported the predictions of the climate model. Main conclusions The relationship between species richness and combined temperature and water availability may be due to both direct (thermoregulatory constraints) and indirect (food resources) factors. Abundance was positively correlated with species richness, suggesting that bat species richness may also be related to productivity. The climatic model may be applicable to other taxonomic groups with similar ecological constraints, for instance certain bird, insect and amphibian clades.  相似文献   

7.
For Madagascan vicariance biogeography and phylogeny‐based conservation, four land snail groups have been predicted as most readily informative: Acavidae, Boucardicus (Cyclophoridae), Reticulapex (Charopidae), and Streptaxidae. Acavids have been evaluated in a previous paper; this paper uses recently described taxa from three mountains in southeastern Madagascar to evaluate the other three groups, based on shell and reproductive characters. Phylogenetic analyses, using appropriate outgroups, were performed on all 17 Boucardicus (31 characters, 120 states), all nine Reticulapex (21 characters, 53 states), and all 15 streptaxids (19 characters, 68 states) known from the three mountains. The Boucardicus cladogram was marginally robust; it supported monophyly of the genus, and it implied evolutionary trends toward larger, more colour‐patterned, more globose shells hatched from larger eggs; toward a dorsally and more weakly papillate penis with a large, external gland; and toward a broad‐based, tightly convoluted fertilization pouch‐seminal receptacle complex with an internal, muscular funnel. A convergence in high‐spired shells supported the recent synonymization of Madecataulus under Boucardicus. According to the cladogram, a three‐lobed apertural peristome was plesiomorphic, was lost, then reappeared convergently. Among the 12 dissected species of Boucardicus, morphology of the female reproductive system was extremely variable (11 of 14 character states autapomorphic). The Reticulapex cladogram supported monophyly of the genus but gave no robust resolution among species. Recent surveys also indicate that Reticulapex is rare to absent in northern Madagascar. The streptaxid cladogram suggested a sister‐group relationship between the endemic clades Par‐vedentulina and Streptostele (Makroconche), but provided no robust resolution among species within either clade or within Gulella. Anatomical material is relatively scarce for Madagascan streptaxids. Vicariance‐biogeographic analysis resulted in the area cladogram (northern Vohimena mountain chain (southern Vohimena chain (southern Anosy chain))). The Vohimena chain, already known for its significantly greater diversity and endemism than the Anosy chain, thus also séems to harbour the older, more plesiomorphic species; this heightens the urgency for conservation and further survey within the Vohimena chain. Acavids (115 species known) remain the most accessible of Madagascar's major, widespread land‐snail groups for island‐wide phylogenetics and biogeography, mainly because of existing frozen‐tissue collections, which have a limited shelf life. Boucardicus (177 species and 6 subspecies known) is clearly the second most accessible.  相似文献   

8.
The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil-borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences.  相似文献   

9.
Aiba  Shin-ichiro  Kitayama  Kanehiro 《Plant Ecology》1999,140(2):139-157
We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both 4.8 cm and 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.  相似文献   

10.
Tang  Cindy Q.  Ohsawa  Masahiko 《Plant Ecology》1999,145(2):221-233
Altitudinal distribution of evergreen broad-leaved trees and changes in their leaf sizes were studied on a humid subtropical mountain, Mt. Emei (3099 m a.s.l., 29°34.5 N, 103°21.5 E), Sichuan, China. Among the total woody flora of ca. 540 species, evergreen broad-leaved trees account for 88 species in 39 genera and 23 families, corresponding to the northern limit of subtropical evergreen broad-leaved trees. The number of evergreen broad-leaved tree species greatly decreased from the low-altitudinal, evergreen broad-leaved forest zone (600–1500 m) to the mid-altitudinal, mixed forest zone (1500–2500 m), and to the high-altitudinal, coniferous forest zone (2500–3099 m). The overall trend of reduced leaf size toward upper zones was analyzed and documented in detail. The 88 species were assigned to three leaf-size classes: notophylls (48%), microphylls (36%), and mesophylls (16%). The leaf size was relatively small and the specific leaf weight (SLW, mg cm–2) was much larger in high altitude as compared to low altitude. No overall correlation was found between leaf size and SLW, but leaf size decreased as SLW increased toward high altitude for certain species having relatively wide altitudinal ranges. Moreover, leaf size varied with forest stratification: canopy trees were predominantly notophyllous species, while subcanopy and understorey trees were mainly microphyllous species. The tendency is compatible with the trend found in other mountains of East Asia.  相似文献   

11.
Using the data published in the Catalogue of the Flowering Plants and Gymnosperms of Peru, we analyzed the elevational distributions of 5323 species reported as endemics from that country as a whole, for 10 families with the highest number of endemic taxa in Peru, and the distribution patterns of these species according to life form. We calculated the density of endemism (number of endemic species divided by area × 1000) and absolute number of endemic species among life forms and families, along an elevational gradient. Overall densities of endemics were 10–15 times higher at mid-elevation (2000–3500 m) than in the Amazonian lowlands (0–500 m). Absolute numbers of endemics peaked at 1500–3000 m for herbs, shrubs, and epiphytes, while trees, vines, and lianas showed maxima in the lowlands (0–500 m); yet densities of endemics for all life forms peaked at 1500–3000 m. Among the 10 families with the highest number of endemics, densities of endemics peaked at mid- to high elevation (1500–4500 m), but showed much disparity in the elevational distribution of absolute numbers of endemic species. Finally, the percentage of endemic species to total species is highest for herbs, shrubs, and epiphytes. Given that less than 10% of the land area for each of the montane zones (2000–4500 m) is protected compared to 13.5–29.9% in the lower elevations (0–1000 m), we recommend that priority be given to increasing the size of protected areas at mid- to high altitude in the Andean slopes to grant further protection in zones with the highest density of endemics. We also recommend that more emphasis be given to collecting and studying non-trees, since most endemic species belong to that class.  相似文献   

12.
    
Song Biyu 《Hydrobiologia》2000,434(1-3):151-163
Species composition, seasonal changes in abundance and biomass of planktonic protozooplankton (ciliates, heliozoans and testaceans), and dynamics of the dominant species were investigated over more than two years in two shallow mesotrophic lakes. The macrophyte-dominated lake Biandantang had more protozoan species than the algal lake Houhu, and the two lakes had significantly different protozoan abundance and biomass patterns, compositions and dominants. On annual average, ciliates formed 81.13%, 91.10%, heliozoans 0.20%, 3.49%, and testaceans 18.67%, 5.42% of total protozoan biomass; the protozoans, in turn, formed 49.77%, 49.48% of total zooplankton biomass in lake Biandantang and Lake Houhu, respectively. With respect to ciliates, naked oligotrichs and Peritrichida (mainly 40–80 m in size) dominated the abundance and Peritrichida dominated the biomass in Lake Biandantang, while Scuticociliatida (mainly smaller than 30 m ) dominated the abundance and tintinnids dominated the biomass in Lake Houhu.  相似文献   

13.
Aim Species richness is an important feature of communities that varies along elevational gradients. Different patterns of distribution have been described in the literature for various taxonomic groups. This study aims to distinguish between species density and species richness and to describe, for land snails in south‐eastern France, the altitudinal patterns of both at different spatial scales. Location The study was conducted on five calcareous mountains in south‐eastern France (Etoile, Sainte Baume, Sainte Victoire, Ventoux and Queyras). Methods Stratified sampling according to vegetation and altitude was undertaken on five mountains, forming a composite altitudinal gradient ranging from 100 to 3100 m. Visual searching and analysis of turf samples were undertaken to collect land snail species. Species density is defined as the number of species found within quadrats of 25 m2. Species richness is defined as the number of species found within an elevation zone. Different methods involving accumulation curves are used to describe the patterns in species richness. Elevation zones of different sizes are studied. Results Eighty‐seven species of land snails were recovered from 209 samples analysed during this study. Land snail species density, which can vary between 29 and 1 species per 25 m2, decreases logarithmically with increasing altitude along the full gradient. However, on each mountain separately, only a linear decrease is observable. The climatic altitudinal gradient can explain a large part of this pattern, but the great variability suggests that other factors, such as heterogeneity of ground cover, also exert an influence on species density. The altitudinal pattern of species richness varies depending on the spatial resolution of the study. At fine resolution (altitudinal zones of 100 m) land snail species richness forms a plateau at altitudes below 1000 m, before decreasing with increasing altitude. At coarse resolution (altitudinal zones of 500 and 1000 m) the relationship becomes linear. Main conclusions This study reveals that land snail species density and land snail species richness form two different altitudinal patterns. Species density exhibits strong variability between sites of comparable altitude. A large number of samples seem necessary to study altitudinal patterns of species density. Species density decreases logarithmically with increasing altitude. Above a critical altitudinal threshold, this decrease lessens below the rate seen in the first 1500 m. Different methods exist to scale‐up species density to species richness but these often produce different patterns. In this study, the use of accumulation curves has yielded a pattern of species richness showing a plateau at low altitude, whereas simple plotting of known altitudinal ranges from single mountains would have produced stronger mid‐altitudinal peaks. This study shows that not only factors such as temperatures and habitat heterogeneity, but also an ecotone effect, are responsible for the observed patterns.  相似文献   

14.
Kammesheidt  Ludwig 《Plant Ecology》1998,139(2):155-165
The contribution of tree sprouts to the recovery of tropical moist forest in Eastern Paraguay after swidden agriculture was examined in 2–15 yr old forest fallows and compared with sprouting in mature forest. The proportion of stems of sprout origin, as individuals arising from stumps or lower parts of live stems ( 1 m), in the stem density declined from 59.5% (stems 1–4.9 cm DBH) and 21.0% (stems 5 cm DBH) in the young regrowth stands (2–5 yr old) to 32.9% and 19.6%, respectively in the older regrowth stands (10 and 15 yr old). Sprouts were absent in the mature forest. Out of 58 species sampled in the regrowth stands, 28 occured both as resprouts and seed regeneration, 7 were only found as resprouts, and 23 were only present as seed-established individuals. No significant relationship was found between the successional status or the growth form of species and apparent resprouting capacity. Seed-established individuals of Trema micrantha were predominant in the two and three-year old regrowth stands. In the more advanced successional stages, T. micrantha was replaced by Cecropia pachystachia and other secondary species. Species richness increased during succession. Species-abundance distribution in the successional stands followed a log series pattern, whereas the mature forest showed a log normal distribution. Floristic similarity to the mature forest, calculated with the qualitative Soerensen index, increased from 0.45 (1–4.9 cm DBH) in the young regrowth stands to 0.52 in the older regrowth stands. In the tree stratum ( 5 cm DBH), however, floristic composition approached only 0.28 in the younger regrowth stands and 0.44 in the older regrowth stands, respectively that of the mature forest.  相似文献   

15.
物种多度与分布幅之间的正相关被认为是一种普遍的规律。但近年在热带山地和岛屿的研究发现多度-分布幅关系会出现不相关或负相关的现象;该现象可能是由于当地多度高且分布幅小的特有种比例较高所导致。在喜马拉雅山东段的勒布沟沿海拔2350—4950 m开展研究:1)记录了当地鸟类多度垂直分布格局;2)验证了该区繁殖鸟总体多度-垂直分布幅关系,并对比了特有种和非特有种分组子集多度-垂直分布幅关系、平均多度和垂直分布中心的差异。研究发现勒布沟鸟类多度垂直分布格局为驼峰格局。该区繁殖鸟类与非特有种的多度-垂直分布幅关系均为正相关,但特有种的多度-垂直分布幅关系为不相关。特有种的多度及海拔分布中心位置均高于非特有种。结果表明区域的鸟类特有性对多度-垂直分布幅关系存在着重要的影响;地理隔离导致的区域物种组成差异,是造成多度-分布幅关系模式变化的重要原因之一。  相似文献   

16.
Lemdana latifi n. sp. was found in connective tissues around the trachea and crop and in the body-cavity of seven of 14 Malayan red jungle fowl Gallus gallus spadiceus. The new species is described and illustrated. Morphologically it is most closely related to Lemdana pavonica and Lemdana francolini. Lemdana latifi is distinguished from the eight valid species of Lemdana by the mean spicular ratio of 1.7:1; the right spicule with a right margin 18–29% (15–31 m; mean 24 m) longer than the left margin; the distal half of the left spicule twisted and S-shaped; and the absence of unpaired papillae at tip of male tail. The new species has smaller adults, a shorter left spicule and a shorter glandular oesophagus than those of L. pavonica and a wider male, shorter spicules and a longer muscular oesophagus than those of L. francolini. The male of L. latifi is 7–9 (8.1)mm long, the left spicule 164–215 (184)m long and the right spicule 98–117 (108)m long. The female is 17–23 (21)mm in length. Sheathed microfilariae from blood smears are 78–100 m long and those from the uterus are 89–103 m long. This is the sixth valid species of Lemdana in the Phasianidae.  相似文献   

17.
Bouma  Tjeerd J.  Hengst  K.  Koutstaal  B.P.  van Soelen  J. 《Plant Ecology》2003,165(2):235-245
Contrasting soil conditions caused by different inundation frequenciesrequire different root growth strategies along the elevational gradient ofcoastal salt marshes. The objective of this study was to examine (1) if rootlifespan was shorter in Elymus pycnanthus, a relativelyfast-growing competitive species dominating high marshes, than inSpartina anglica, a relatively slow-growingstress-tolerating species dominating low marshes, and (2) if the species withlonger lifespan had higher tissue density (g cm–3) and lowerspecific root length (m g–1) than the species with shorterlifespan. Root production and mortality rates were established by samplingrootsin in-growth cores, and using triphenyltetrazolium chloride (TTC) staining todistinguish vital from dead roots. Root lifespan was estimated by dividing theliving root biomass (Elymus: 36 gm–2, Spartina: 100 gm–2) by root production (Elymus:0.28 g day–1 m–2,Spartina: 0.25 g day–1m–2) or root mortality rates(Elymus: 0.42–0.53 g day–1m–2). Spartina did not exhibitsubstantial mortality. Despite the present method only yielding rough estimatesof average root lifespan, it is evident that root longevity is much shorter inElymus than in Spartina. Rootlifespanranged between 10–19 weeks for Elymus but was closeto 1 year in Spartina, indicating thatElymus replaces it's roots continuously throughout thegrowing season, whereas Spartina maintains its roots overthe growing season. Fine roots of Elymus had slightlylowertissue density (0.094) than those of Spartina (0.139),whereas coarse roots of Elymus andSpartina had similar tissue density (0.100 gcm–3). Fine roots of Elymus andSpartina had similar specific root length (195 mg–1). However, coarse roots ofElymus (50 m g–1) had higherspecific root length than those of Spartina (20 mg–1) due to having smaller root diameter(Elymus: 548 m,Spartina: 961 m). We conclude thatpresentobservations on Elymus and Spartinasupport our first hypothesis that the competitive species fromthehigh marsh had short-lived roots compared to the'stress-tolerating'species from the low marsh. However, our result provide only weak support forthe existence of a positive correlation between root longevity and tissuedensity and a negative correlation between root longevity and specific rootlength.  相似文献   

18.
Summary The hematological features of cold-adapted, red-blooded Antarctic teleosts has prompted this study on the relationship between hemoglobin molecular structure and oxygen-binding properties. The hemolysates from 21 species of 5 families contained one component (Hb 1), often accompanied by an additional, minor one (Hb 2, 5%–10% of total). On the other hand, 3 species of Zoarcidae, a non-endemic family, had 4–5 components. All purified hemoglobins from the former group, but only 1–2 of the 4–5 hemoglobins of Zoarcidae, showed a strong Root effect (pH regulation of oxygen binding). Globins from each hemoglobin have been purified and characterised with respect to molecular structure in several species. The similarity between the complete amino acid sequence of one -chain and those of non-Antarctic -chains is lower than that among the latter sequences, suggesting independent pathways of evolution.Presented at the 5th SCAR Symposium on Antarctic Biology, Hobart, Australia (August 29th-September 3rd, 1988)  相似文献   

19.
Hesperiidae are claimed to be a group of elusive butterflies that need major effort for sampling, thus being frequently omitted from tropical butterfly surveys. As no studies have associated species richness patterns of butterflies with environmental gradients of high altitudes in Brazil, we surveyed Hesperiidae ensembles in Serra do Mar along elevational transects (900–1,800 m above sea level) on three mountains. Transects were sampled 11–12 times on each mountain to evaluate how local species richness is influenced by mountain region, vegetation type, and elevational zones. Patterns were also analyzed for the subfamilies, and after disregarding species that exhibit hilltopping behavior. Species richness was evaluated by the observed richness, Jacknife2 estimator and Chao 1 estimator standardized by sample coverage. Overall, 155 species were collected, but extrapolation algorithms suggest a regional richness of about 220 species. Species richness was far higher in forest than in early successional vegetation or grassland. Richness decreased with elevation, and was higher on Anhangava mountain compared with the two others. Patterns were similar between observed and extrapolated Jacknife2 richness, but vegetation type and mountain richness became altered using sample coverage standardization. Hilltopping species were more easily detected than species that do not show this behavior; however, their inclusion did neither affect estimated richness nor modify the shape of the species accumulation curve. This is the first contribution to systematically study highland butterflies in southern Brazil where all records above 1,200 m are altitudinal extensions of the known geographical ranges of skipper species in the region.  相似文献   

20.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号