首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Heterocyst formation and nitrogenase synthesis in Anabaena sp.   总被引:1,自引:0,他引:1  
Summary When filaments from a culture of Anabaena sp. growing photoautotrophically with nitrate as a nitrogen source are placed in a nitrate-free mineral medium and incubated anaerobically in the light, the formation of heterocysts and the synthesis of nitrogenase both begin after a lag of about 24 hours. During the lag period, about 70% of the phycocyanin is destroyed. Under an atmosphere of N2-CO2, the nitrogenase activity rises to a peak value, and then falls markedly as growth at the expense of N2 begins. Phycocyanin synthesis resumes concomitantly with growth. Under an atmosphere of Ar-CO2, the formation of heterocysts and the synthesis of nitrogenase proceed to higher levels than those observed under N2-CO2, and the nitrogenase level is thereafter maintained. Under these conditions, neither growth nor resynthesis of phycocyanin occurs, and phycocyanin eventually falls to about 10% of its initial level in the filaments; however, growth can be promptly initiated if N2 is admitted to the system. The implications of these findings are discussed.  相似文献   

2.
Identifying behavioural basis of competitive relationship is essential to understand outcome of interspecific competition. However, it remains difficult to investigate demographic effect of competitive behaviour, because various kinds of behaviours may co‐occur in the competition and make the dynamics far complicated in nonlinear ways. We report that the behavioural basis of interspecific interaction can be identified, by focusing on the timescale difference from the occurrence of each behaviour to the appearance of its demographic effect. Between two bean beetles, Callosobruchus chinensis and C. maculatus, major interspecific interactions are resource competition (RC) at the larval stage and reproductive interference (RI) at the adult stage. RC has longer time lag than RI, because effect of RC appears in the adult number of the next generation through larval competition while effect of RI appears instantaneously in the adult number through early death of females. If we detect two effects with different time lags from the competition dynamics, an effect with intergenerational time lag and with no time lag would be considered as RC and RI, respectively. We applied empirical dynamic modelling approach, which is a nonlinear time series analysis for detecting causal interactions and the strength, to two published datasets of experimental competition between those beetles. Results showed the significant causality from the winner species to the loser one in both experiments, but the causality time lag differed between experiments: the causality had no time lag in the C. chinensis‐win data, while intergenerational time lag in C. maculatus‐win data. Furthermore, detection of the causality with intergenerational time lag from C. maculatus to C. chinensis in both experiments suggests interplay of constant RC and variable RI which can reverse the outcome. This study is the first successful case study that links behavioural‐level interactions to demographic‐level effects in interspecific competition.  相似文献   

3.
For traits showing correlated evolution, one trait may evolve more slowly than the other, producing evolutionary lag. The species-pairs evolutionary lag test (SPELT) uses an independent contrasts based approach to detect evolutionary lag on a phylogeny. We investigated the statistical performance of SPELT in relation to degree of lag, sample size (species pairs), and strength of association between traits. We simulated trait evolution under two models: one in which trait X changes during speciation and the lagging trait Y catches up as a function of time since speciation; and another in which trait X evolves in a random walk and the lagging trait Y is a function of X at a previous time period. Type I error rates under “no lag” were close to the expected level of 5%, indicating that the method is not prone to false-positives. Simulation results suggest that reasonable statistical power (80%) is reached with around 140 species pairs, although the degree of lag and trait associations had additional influences on power. We applied the method to two datasets and discuss how estimation of a branch length scaling parameter (κ) can be used with SPELT to detect lag.  相似文献   

4.
Mitotic instability was found in an intraspecific hybrid of Haplopappus gracilis (Nutt.) Gray and in an interspecific hybrid of H. arenarius Benth. and H. aureus Gray. The latter cross was between distantly related species with different chromosome numbers and amounts of DNA. The intraspecific hybrid exhibited a partly recessive phenotype due to loss of a chromosome segment containing the wild type locus, and the interspecific hybrid showed abnormal developmental patterns for several morphological characters due to chromatin loss. Both hybrids were slower growing, smaller, and generally weaker than parental types. In both examples, this weakness was correlated with chromatin loss due to cleavage by cell wall formation across chromosome arms too long to separate properly at anaphase. This was caused by a very unequal translocation in H. gracilis and to a disparity in genome sizes in the interspecific hybrid. In both examples, the initial chromosome cleavage resulted in a breakage-fusion-bridge cycle that persisted into some BC, progeny of H. gracilis.  相似文献   

5.
PCR‐based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals’ sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex‐chromosome‐specific gene Chromo‐Helicase‐DNA binding protein using a loop‐mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo‐block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR‐based laboratory methods. Our successful cross‐species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species.  相似文献   

6.
Summary A mutant (dna-1) of Salmonella typhimurium defective in DNA synthesis is described. DNA synthesis is stopped in this mutant at 42° after a residual synthesis amounting to about 50 to 60% of the total cellular DNA in minimal medium and about 120 to 200% in a medium enriched with amino acids. Reshift back to permissive temperature after the inhibition of DNA synthesis at 42° allows for recovery of DNA synthesis after a lag of about 30 min. Protein synthesis is required during that lag for the recovery of DNA synthesis at permissive temperature. The density transfer experiments indicate that in the mutant dna-1 chromosome termini are replicated normally at 42° while the initiation of new rounds of replication is inhibited although the mutation is probably leaky at this temperature. The mutant is hypersensitive to sodium deoxycholate at 42° which suggests alteration of the membrane structure.  相似文献   

7.
We have constructed intP1 and intFs strains of Escherichia coli in which the basic replicons of either plasmid P1 or plasmid F (oriS) were integrated into an inactivated oriC, such that chromosome replication is controlled by the integrated plasmid replicon. In this study, we have further analysed these strains, and density-shift experiments revealed that chromosome replication occurred randomly during the cell cycle. Flow-cytometry analyses of exponentially growing populations supported this conclusion, and also showed that the DNA/mass ratio of the strains decreased with increasing growth rate. Flow cytometry of exponentially growing cultures treated with rifampicin demonstrated that initiation of replication was uncoordinated in cells containing multiple replication origins.  相似文献   

8.
Community assembly may not follow predictable successional stages, with a large fraction of the species pool constituted by potential pioneering species and successful founders defined through lottery. In such systems, priority effects may be relevant in the determination of trajectories of developing communities and hence diversity and assemblage structure at later advanced states. In order to assess how different founder species may trigger variable community trajectories and structures, we conducted an experimental study using subtidal sessile assemblages as model. We manipulated the identity of functionally different founders and initial colony size (a proxy of the time lag before the arrival of later species), and followed trajectories. We did not observe any effects of colony size on response variables, suggesting that priority effects take place even when the time lag between the establishment of pioneering species and late colonizers is very short. Late community structure at experimental panels that started either with the colonial ascidian Botrylloides nigrum, or the arborescent bryozoan Bugula neritina, was similar to control panels allowed natural assembling. In spite of high potential for fast space domination, and hence negative priority effects, B. nigrum suffered high mortality and did not persist throughout succession. Bugula neritina provided complex physical microhabitats through conspecific clustering that have enhanced larval settlement of late species arrivals, but no apparent facilitation was observed. Differently, panels founded by the encrusting bryozoan Schizoporella errata led to different and less diverse communities compared to naturally assembled panels, evidencing strong negative priority effects through higher persistence and space preemption. Schizoporella errata founder colonies inhibited further conspecific settlement, which may greatly relax intraspecific competition, allowing resource allocation to colony growth and space domination, thus reducing the chances for the establishment of other species.  相似文献   

9.
Only a few mutations affecting flowering time have been detected in maize. We analyzed a spontaneous early mutation, vgt-f7p, which appeared during production of the inbred line F7. This mutation shortens the time from planting to flowering by about 100 growing degree days (GDD), and reduces the number of nodes. It therefore seems to affect the timing of meristem differentiation from a vegetative to a reproductive state. It was mapped to a 6 cM confidence interval on chromosome 8, using a QTL mapping approach. QTL analysis of a mapping population generated by crossing the mutant F7 line (F7p) and the Gaspé flint population showed that vgt-f7p is probably allelic to vgt1, a QTL described in previous studies, and affects earliness more strongly than the Gaspé allele at vgt1. Global analysis of the QTL in the region suggested that there may be two consensus QTL, vgt1 and vgt2. These two QTL have contrasting allelic effects: rare alleles conferring extremely early flowering at vgt1 vs. greater diversity and milder effects at locus vgt2. Finally, detailed syntenic analysis showed that the vgt1 region displays a highly conserved duplicated region on chromosome 6, which also plays an important role in maize flowering time variation. The cloning of vgt1 should, therefore, also facilitate the analysis of the molecular basis of variation due to this second region.  相似文献   

10.
Summary The variability of the time interval between successive rounds of chromosome replication was estimated by density-shift experiments, by measuring the conversion of heavy DNA to hybrid density and light DNAs upon transfer of a steady-state culture growing in medium with [13C]glucose and 15NH4Cl to medium with light isotopes. The coefficient of variation (CV%) for the interreplication time of the Escherichia coli K12 chromosome was found to be 17%, i.e. similar to that for interdivision time. The presence of additional copies of oriC in the cell on a high copy number plasmid did not increase the CV of interreplication time. It is concluded that a single rate-limiting event is unlikely to time the initiation of chromosome replication. The regulation of initiation at oriC and the coordination with cell division is discussed.  相似文献   

11.

Background

The lag time of an invasion is the delay between arrival of an introduced species and its successful spread in a new area. To date, most estimates of lag times for plants have been indirect or anecdotal, and these estimates suggest that plant invasions are often characterized by lag times of 50 years or more. No general estimates are available of lag times for tropical plant invasions. Historical plantings and documentation were used to directly estimate lag times for tropical plant invasions in Hawai''i.

Methodology/Principal Findings

Historical planting records for the Lyon Arboretum dating back to 1920 were examined to identify plants that have since become invasive pests in the Hawaiian Islands. Annual reports describing escape from plantings were then used to determine the lag times between initial plantings and earliest recorded spread of the successful invaders. Among 23 species that eventually became invasive pests, the average lag time between introduction and first evidence of spread was 14 years for woody plants and 5 years for herbaceous plants.

Conclusions/Significance

These direct estimates of lag times are as much as an order of magnitude shorter than previous, indirect estimates, which were mainly based on temperate plants. Tropical invaders may have much shorter lag times than temperate species. A lack of direct and deliberate observations may have also inflated many previous lag time estimates. Although there have been documented cases of long lag times due to delayed arrival of a mutualist or environmental changes over time, this study suggests that most successful invasions are likely to begin shortly after arrival of the plant in a suitable habitat, at least in tropical environments. Short lag times suggest that controlled field trials may be a practical element of risk assessment for plant introductions.  相似文献   

12.
Observations were made on the succession and growth rates of crustose coralline algae growing in situ on artificial substrata in a shallow fore-reef environment on Ishigaki Island, Ryukyu Islands. Succession in well-illuminated environments manifests itself as a gradual replacement of species having very thin thalli by those having larger and thicker thalli. The species Porolithon onkodes, Paragoniolithon conicum and Lithophyllum insipidum achieved dominance by competitive interactions of overgrowing margins. The thicker species recruit quickly (within the first few months), but because of their slow growth rate do not displace the pioneer species that have very thin thalli until after the latter begin to die. Regardless of seasonal temperature fluctuations, which exceed 10 °C, the coralline algal succession is the same for each season. The maximum lateral growth rates of the major species range between 2.9 and 3.9 mm/month. Vertical growth rates of Porolithon onkodes, the thickest species, are the most rapid (more than 2 mm/year at maximum) relative to those of other species. Accretion rates of entire coralline algal cover on ungrazed substrata range from 1.0 to 1.2 mm/year (not allowing any lag time for recruitment), whereas those of grazed substrata are lower. These results are consistent with species which are ecological equivalents and live in similar environments on Caribbean reefs.  相似文献   

13.
Role of ribosomes in cycloheximide resistance of Neurospora mutants   总被引:5,自引:0,他引:5  
Summary In Neurospora crassa, mutants resistant against cycloheximide appear with a marked time lag after mutation induction. We have suggested (Neuhäuser et al., 1970) that this lag indicates the time needed for the synthesis of altered ribosomes (phenotypic lag), that the drug in the wildtype acts upon the ribosomes, and that resistance is due to alterations in them.By measurements of poly-U directed poly-Phe synthesis on ribosomes of the wildtype and two different cycloheximide resistant mutants in a cell free system it is shown here that mutant ribosomes indeed differ from those of the wildtype. Poly-Phe synthesis on mutant ribosomes proceeds in the presence of the drug, whereas that on wildtype ribosomes is inhibited. This means that the earlier suggestions are correct.Abbreviation CHX cycloheximide  相似文献   

14.
Inhibitors of nucleic acid and protein synthesis were applied to excised green pea stem sections in the absence and presence of IAA and the effects on growth noted as a function of time. Actinomycin D, which inhibits de novo RNA synthesis, ribonuclease, which degrades RNA, and puromycin, which prevents transfer of aminoacyl residues into the growing polypeptide chain, inhibit section growth only after lengthy lag periods of, respectively, 2, 8 and 5 hr. For actinomycin D and ribonuclease, preincubation in the inhibitor alone, prior to IAA application, does not reduce the lag period, indicating that the lag is not caused by slow penetration of the inhibitor. By contrast, chloramphenicol, which prevents binding of messenger RNA to ribosomes, and p-fluorophenylalanine, a competitive antagonist of phenylalanine, produce significant inhibitions in the first hour. The implications of these results for the mechanism of auxin action are considered.  相似文献   

15.
16.
The finding that most strains of microbes produce a growth stimulating substance for microorganisms was demonstrated and confirmed with the culture broth of Escherichia coli grown on a glucose-mineral medium. Addition of culture broth of E. coli to the culture media of the others markedly reduced the lag phase in microbial growth but not growth rate in the subsequent exponential phase nor the total cell yield in the stationary phase. The growth stimulation causing reduction of the lag phase was dependent on the amount of culture broth added. Occurrence of cell growth was essential for the excretion of the growth stimulating substance by E. coli. Under identical inoculum size, even with a heavy inoculum, a further reduction of the lag phase was observed by the addition of culture broth of E. coli. The substance was only effective at the initial growth phase but inert when the substance was added to a growing culture at the exponential phase. Finally, the substance was identified as pyrroloquinoline quinone, a newly established coenzyme, through chromatographic, spectroscopic and enzymatic criteria.  相似文献   

17.
We describe a novel chromosome engineering technique for shuffling selected regions of chromosomes from two strains in Saccharomyces cerevisiae: The technique starts with the construction of MAT a and MATα strains in which a particular chromosome is split at exactly the same site in both strains such that the split chromosomes generated are marked with different markers. The two strains are then crossed, and the resultant diploid is cultivated in nutrient medium to induce loss of the split chromosome originating from either of the strains. We predicted that some of these clones that are hemizygous for the split chromosome would spontaneously restore a homozygous configuration of the split chromosome during cultivation. We verified this prediction by tetrad analysis and quantitative Southern hybridization analysis, indicating that it is possible to create diploid hybrids in which a selected region of a chromosome from one strain is replaced by the corresponding chromosomal region from another strain. We also found that some chromosomal segments maintain a hemizygous state. This novel technique, which we call ‘chromosome shuffling’, could provide a new tool to analyze phenotypic alterations caused by the replacement or hemizygosity of a selected chromosomal region in not only laboratory but also industrial strains of S. cerevisiae.  相似文献   

18.
One element of gametophytic apomixis is unreduced embryo sac (ES) formation, which often occurs precociously displacing or replacing meiosis and causing apospory or diplospory, respectively. This study evaluated a premise that apomixis may evolve in hybridogenous plants that contain duplicate sets of allelically divergent ovule development heterochrony genes. The duplicate sets of genes would belong to duplicate genomic regions that are recombinationally isolated from each other (no gene flow) by allopolyploidy or paleopolyploidy, and this isolation would genetically stabilize apomixis. For apomixis to evolve, the ancestral donors of the duplicate regions must have differed from each other in timing of megasporogenesis, ES formation and embryony such that epigenetic misexpressions, or competitions in expression, of the duplicate heterochrony genes in hybridogenous derivatives would cause apomixis. Herein, we report substantial heterochrony in onset timing of germline stages among several sexual diploid Tripsacum genotypes, which may have been progenitors of apomictic polyploid Tripsacum. Tripsacum floridanum and Tripsacum zopilotense genotypes entered meiosis early. The former advanced rapidly through ES formation, but the latter entered a lengthy lag phase prior to ES formation. In two Tripsacum dactyloides var. dactyloides genotypes, meiosis occurred late and was followed by a distinct lag phase prior to ES formation. Likewise, the T. dactyloides var. meridonale genotype entered meiosis late, but the lag phase was brief. These differences appear to reflect allelic diversity at loci responsible for onset timing of different germline development stages within and across species and possibly across the recombinationally isolated duplicate chromosome regions in the Tripsacum paleopolyploid haplome (x = 18). Unique combinations of divergent alleles in hybridogenous plants coupled with polyploidy induced gene misexpressions may be required for apomixis to evolve. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
 We studied five natural populations of Dactylis glomerata L. (Poaceae) growing at different altitudes in the south-eastern fringe of the Alps in northern Slovenia to determine the subspecies. The stomatal length, the pollen diameter and chromosome counts were consistent with the tetraploid taxon D. glomerata subsp. glomerata (2n=4x =28). Genome size was measured in 55 individuals. The mean 2C value was 8.6 pg DNA. The mean 2C values of populations growing at different altitudes showed only 2.1% variation, and no correlation was observed between altitude and genome size. In D. nk;glomerata subsp. glomerata eight nucleoli were observed in late telophase, indicating that the nucleolus-organising regions inherited from both diploid parent species are functional. We demonstrate that both genome size and the number of nucleoli may be used to determine the ploidy level as an alternative to chromosome counting. Received May 31, 2001; accepted March 5, 2002 Published online: November 14, 2002 Addresses of the authors: Dr. Barbara Vilhar (e-mail: barbara.vilhar@uni-lj.si), Tatjana Vidic, Nejc Jogan, Prof. Marina Dermastia, University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1001 Ljubljana, Slovenia.  相似文献   

20.
We have measured the turnover rate of ribosomal RNA in exponentially growing Tetrahymena thermophila cells, cells entering the plateau phase of growth, and nutrient-deprived (starved) cells. Ribosomal RNA is stable in cells in early log phase growth but it begins to turnover as the cells begin a deceleratory growth phase prior to entering a plateau state. Likewise, rRNA in cells transferred from early log phase growth to a starvation medium begins to be degraded immediately upon starvation. In both cases the degradation of rRNA exhibits biphasic kinetics. A rapid initial exponential degradation with a half time of nine and one-half hours lasting for six hours is followed by a slower exponential degradation with a half-life of 35 hours. When starved cells are transferred to fresh growth medium turnover of rRNA ceases. The evidence presented suggests that the alteration in degradation rate is a regulated process which is most likely independent of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号