首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bird species are sexually monomorphic and cannot be sexed based on phenotypic traits. Rapid sex determination is often a necessary component of avian studies focusing on behavior, ecology, evolution, and conservation. While PCR‐based methods are the most common technique for molecularly sexing birds in the laboratory, a simpler, faster, and cheaper method has emerged, which can be used in the laboratory, but importantly also in the field. Herein, we used loop‐mediated isothermal amplification (LAMP) for rapid sex determination of blood samples from juvenile European blackcaps, Sylvia atricapilla, sampled in the wild. We designed LAMP primers unique to S. atricapilla based on the sex chromosome‐specific gene, chromo‐helicase‐DNA‐binding protein (CHD), optimized the primers for laboratory and field application, and then used them to test a subset of wild‐caught juvenile blackcaps of unknown gender at the time of capture. Sex determination results were fast and accurate. The advantages of this technique are that it allows researchers to identify the sex of individual birds within hours of sampling and eliminates the need for direct access to a laboratory if implemented at a remote field site. This work adds to the increasing list of available LAMP primers for different bird species and is a new addition within the Passeriformes order.  相似文献   

2.
DNA amplification in the field: move over PCR,here comes LAMP   总被引:2,自引:0,他引:2       下载免费PDF全文
It would not be an exaggeration to say that among molecular technologies, it is PCR (polymerase chain reaction) that underpins the discipline of molecular ecology as we know it today. With PCR, it has been possible to target the amplification of particular fragments of DNA, which can then be analysed in a multitude of ways. The capability of PCR to amplify DNA from a mere handful of copies further means that conservationists and ecologists are able to sample DNA unobtrusively and with minimal disturbance to the environment and the organisms of interest. However, a key disadvantage of PCR‐based methods has been the necessity for a generally non‐portable, laboratory setting to undertake the time‐consuming thermocycling protocols. LAMP (loop‐mediated isothermal amplification) offers a logistically simpler protocol: a relatively rapid DNA amplification reaction occurs at one temperature, and the products are visualized with a colour change within the reaction tubes. In the first field application of LAMP for an ecological study, Centeno‐Cuadros et al. ( 2016 ) demonstrates how LAMP can be used to determine the sex of three raptor species. By enabling DNA amplification in situ and in ‘real‐time’, LAMP promises to revolutionize how molecular ecology is practised in the field.  相似文献   

3.
PCR is a universal tool for the multiplication of specific DNA sequences. For example, PCR‐based sex determination is widely used, and a diversity of primer sets is available. However, this protocol requires thermal cycling and electrophoresis, so results are typically obtained in laboratories and several days after sampling. Loop‐mediated isothermal amplification (LAMP) is an alternative to PCR that can take molecular ecology outside the laboratory. Although its application has been successfully probed for sex determination in three species of a single avian Family (raptors, Accipitridae), its generality remains untested and suitable primers across taxa are lacking. We designed and tested the first LAMP‐based primer set for sex determination across the modern birds (NEO‐W) based on a fragment of the gene chromo‐helicase‐DNA‐binding protein located on the female‐specific W chromosome. As nucleotide identity is expected to increase among more related taxa, taxonomically targeted primers were also developed for the Order Falconiformes and Families Psittacidae, Ciconiidae, Estrildidae and Icteridae as examples. NEO‐W successfully determined sex in a subset of 21 species within 17 Families and 10 Orders and is therefore a candidate primer for all modern birds. Primer sets designed specifically for the selected taxa correctly assigned sex to the evaluated species. A short troubleshooting guide for new LAMP users is provided to identify false negatives and optimize LAMP reactions. This study represents the crucial next step towards the use of LAMP for molecular sex determination in birds and other applications in molecular ecology.  相似文献   

4.
5.
Phytophthora nicotianae is a phytopathogenic oomycete with a wide host range and worldwide distribution. Rapid detection and diagnosis at the early stages of disease development are important for the effective control of P. nicotianae. In this study, we designed a simple and rapid loop‐mediated isothermal amplification (LAMP)‐based detection method for P. nicotianae. We tested three DNA extraction methods and selected the Kaneka Easy DNA Extraction Kit version 2, which is rapid and robust for LAMP‐based detection. The designed primers were tested using mycelial DNA from 35 species (81 isolates) of Phytophthora, 12 species (12 isolates) of Pythium, one isolate of Phytopythium and one isolate each from seven other soil‐borne pathogens. All of the 42 P. nicotianae isolates were detected by these primers, and no other isolates gave positive results. Three isolates were tested for the sensitivity of the reaction, and the lowest amounts of template DNA that could be detected were 10 fg for two isolates and 1 fg for the third. The target was detected within 25 min in all tested samples, including DNA extracted from both inoculated and naturally infected plants. In contrast, PCR assays with P. nicotianae‐specific primers failed or showed weakened detection in several samples. Thus, we found that the rapid DNA extraction and LAMP assay methods developed in this study can be used to detect P. nicotianae with high sensitivity, specificity and stability.  相似文献   

6.
We report a rapid diagnosis of soya bean (Glycine max L.) root rot caused by Fusarium culmorum, using a loop‐mediated isothermal amplification (LAMP) assay. We used the CYP51C gene sequence to design LAMP assay primers specific for F. culmorum. The LAMP assay amplified the target gene efficiently in 60 min at 63°C. The sensitivity of the assay was 100 pg/μl of genomic DNA. Among the tested soya bean pathogens, a positive colour (sky blue) was only observed in the presence of F. culmorum with the addition of hydroxynaphthol blue (HNB) dye prior to amplification, whereas other species isolates showed no colour change. Suspected diseased soya bean samples collected in the field from Jiangsu, Shandong and Anhui provinces and Beijing were diagnosed successfully using the LAMP assay reported here. This study provides a new and readily available method for rapid diagnosis of soya bean root rot caused by F. culmorum.  相似文献   

7.
Burkholderia gladioli pv. alliicola is a causal agent of rot on a wide range of hosts including onion and tulip. It is one of quarantine phytopathogenic bacteria in China. To reduce the economic losses associated with this pathogen, simple and rapid detection methods are needed. In this study, an efficient loop‐mediated isothermal amplification (LAMP) assay with a real‐time fluorometer was developed. The analysis of 16S‐23S rRNA intergenic transcribed spacer (ITS) sequences showed considerable variability between different Burkholderia species and B. gradioli pathovars. A set of LAMP primers was designed based on the ITS region. The sensitivity and specificity of the developed assay were evaluated at the optimal temperature of 65°C. The primers were specific for B. gladioli pv. alliicola and did not react to strains of others species and other pathovars in the species B. gladioli. The sensitivity of the real‐time LAMP assay was 1 fg DNA which was 100 times higher than that of conventional PCR. The method was verified by testing natural samples and inoculated onion seeds, and it showed effectiveness. The real‐time LAMP assay established in this study is an effective method for detection of B. gladioli pv. alliicola.  相似文献   

8.
9.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis.  相似文献   

10.
Rice bakanae is an important disease that causes serious rice production loss worldwide. We describe a new method for rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum, based on loop‐mediated isothermal amplification (LAMP) assays. After screening, primers were selected to target FusariumDNA sequences, that is, the intergenic spacer (IGS) region of the nuclear ribosomal operon and reductase‐coding region (RED1) in F. fujikuroi and F. proliferatum, respectively. Both LAMP assays efficiently amplified target genes in 70 min at 62°C. A colour change from purple to sky blue (visible to the unaided eye) was observed in the presence of the DNA of the targeted pathogens only, by adding hydroxynaphthol blue to the reaction system prior to amplification. The minimum of genomic DNA needed in the assays was 67 and 346 pg/μl for F. fujikuroi and F. proliferatum, respectively. Using the two assays described here, we successfully and rapidly diagnosed suspected diseased rice plant and seed samples collected from Jiangsu Province.  相似文献   

11.
Projected increases in Africa's human population over the next 40 years point to further, large-scale conversion of natural habitats into farmland, with far-reaching consequences for raptor species, some of which are now largely restricted to protected areas (PAs). To assess the importance of PAs for raptors in Uganda, we conducted an annual road survey through savanna, pastoral and agricultural land during 2008–2015. Here, we present density estimates for 34 diurnal raptor species, 17 of which were encountered largely or entirely within PAs. These included seven out of eight globally threatened or near-threatened species surveyed. Based mainly on published demographic values, we converted density estimates (birds 100 km?2) to numbers of adult pairs, for 10 resident, savanna-dependent species. We then estimated adult population sizes within conservation areas (individual PAs and clusters of contiguous PAs), based on the area of savanna in each site. This suggested that two threatened residents, Martial Eagle Polemaetus bellicosus and Lappet-faced Vulture Torgos tracheliotos, have national breeding populations of just 53–75 and 74–105 pairs, respectively. A third species, White-headed Vulture Trigonoceps occipitalis, may have a breeding population of just 22–32 pairs. In each case, at least 90% of pairs are thought to reside within Uganda's five largest conservation areas. In three cases our estimates of pair density were markedly lower than in other studies, while in six cases they were broadly consistent with published findings, often derived using more intensive survey methods. Further work is required to determine the accuracy of our estimates for individual conservation areas, and to assess the long-term viability of Uganda's threatened raptor populations.  相似文献   

12.
Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced‐representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex‐specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north–south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.  相似文献   

13.
Dissecting phenotypic variance in life history traits into its genetic and environmental components is at the focus of evolutionary studies and of pivotal importance to identify the mechanisms and predict the consequences of human‐driven environmental change. The timing of recurrent life history events (phenology) is under strong selection, but the study of the genes that control potential environmental canalization in phenological traits is at its infancy. Candidate genes for circadian behaviour entrained by photoperiod have been screened as potential controllers of phenological variation of breeding and moult in birds, with inconsistent results. Despite photoperiodic control of migration is well established, no study has reported on migration phenology in relation to polymorphism at candidate genes in birds. We analysed variation in spring migration dates within four trans‐Saharan migratory species (Luscinia megarhynchos; Ficedula hypoleuca; Anthus trivialis; Saxicola rubetra) at a Mediterranean island in relation to Clock and Adcyap1 polymorphism. Individuals with larger number of glutamine residues in the poly‐Q region of Clock gene migrated significantly later in one or, respectively, two species depending on sex and whether the within‐individual mean length or the length of the longer Clock allele was considered. The results hinted at dominance of the longer Clock allele. No significant evidence for migration date to covary with Adcyap1 polymorphism emerged. This is the first evidence that migration phenology is associated with Clock in birds. This finding is important for evolutionary studies of migration and sheds light on the mechanisms that drive bird phenological changes and population trends in response to climate change.  相似文献   

14.
We present the findings of a DNA barcoding study of the UK tree flora, implemented as part of an innovative, research‐based science education programme called ‘Tree School’. The UK tree flora comprises native and introduced species, and is a taxonomically diverse study group for the exploration of the potential and limitations of DNA barcoding. The children participating in the project collected voucher specimens and generated DNA barcode sequences from trees and shrubs found in the grounds and surrounding woodlands of a residential field centre in Dorset, UK. We assessed the potential of rbcL and matK markers for amplification and DNA sequencing success and for species discrimination among the 67 tree and shrub species included in this study. Although we achieved 100% PCR amplification and sequencing success for rbcL and matK, mononucleotide repeats affected sequence quality in matK for some taxonomic groups (e.g. Rosaceae). Species discrimination success ranged from 65% to 71% using tree‐based methods to 86% using BLASTN. The occurrence of known hybrids (diploid and polyploid) and their progenitors on the study site reduced the overall species discrimination success for both loci. This study demonstrates that, even in a floristic context, rbcL and matK alone are insufficient for the discrimination of UK tree species, especially where taxonomically complex groups are present. From a science education perspective, DNA barcoding represents a compelling and accessible platform for the engagement of non‐experts in ongoing research, providing an opportunity for them to contribute authentic scientific data to an international research campaign.  相似文献   

15.
Amino acid changes in mitochondrial (mt) oxidative phosphorylation (OXPHOS) genes have been suggested as a key adaptation to environmental variation. Here, we analyzed 416 sequences of ATPase synthase 6 (MT‐ATP6) and NADH dehydrogenase 2 (MT‐ND2) in 22 different hare (Lepus) species from across a wide range of habitats and climates. We used site‐ and branch‐based methods to test for positive selection on specific codons and lineages. We found four codons in MT‐ATP6 and five in MT‐ND2 under positive selection, affecting several species lineages. We investigated the association of protein variants at each locus with climate zone, using multinomial generalized linear models (glm), including species, regions, historical introgression events, and the co‐occurring protein variant at the other locus as additional explanatory variables. A significant climate effect as based on the “Köppen climate classification” was observed for MT‐ND2 protein variants as translated from our nucleotide sequences. Moreover, MT‐ND2 protein variants were significantly affected by the co‐occurring MT‐ATP6 protein variant in the same mtDNA molecule. Contrary to the expectation for non‐recombining mitochondrial DNA molecules, the presence of an evolutionarily relatively ancestral protein variant at one locus was associated with a relatively derived protein at the other locus in the same mitochondrial molecule, respectively. The relative evolutionary status of a protein variant was evaluated according to its positions relative to the respective out‐group protein variant in a network analysis of nucleotide sequences. All our results suggest a complex effect of various climatic parameters acting on multiple mtOXPHOS genes in a co‐adaptive way, favoring combinations of ancestral and derived variants.  相似文献   

16.
A rapid, sensitive and visual loop‐mediated isothermal amplification (LAMP) method for detecting Acidovorax citrulli in cucurbit seed was developed in this study. The LAMP primers were designed to recognize the non‐ribosomal peptide synthetase (NRPS) gene (locus tag: Aave_4658) from A. citrulli. The LAMP assay was conducted at 64°C in 1 hr with calcein as an indicator. The sensitivity and specificity of the LAMP assay were further compared with those of a conventional polymerase chain reaction (PCR). The LAMP assay is highly specific to A. citrulli, and no cross‐reaction was observed with other bacterial pathogen. The sensitivity of the LAMP assay was 100‐fold higher than that of conventional PCR with a detection limit of 1 pg of genomic DNA. Using the LAMP assay, 7 of 12 cantaloupe seedlots collected from Xinjiang province were determined to be positive for A. citrulli. In contrast, only 2 of 12 seedlots showed positive for the pathogen with conventional PCR. Moreover, A. citrulli was detected in 100% of artificially infested seedlots with 0.01% infestation or greater. Our results demonstrated that the LAMP assay was simple, visual and sensitive for detecting A. citrulli, especially in seed health testing. Hence, this method has great potential application in routine detecting seed‐borne pathogens and reducing the risk of epidemics.  相似文献   

17.
We report a new approach for molecular sex identification of extant Ursinae and Tremarctinae bears. Two Y‐specific fragments (SMCY and 318.2) and one X‐specific fragment (ZFX) are amplified in a multiplex PCR, yielding a double test for male‐specific amplification and an internal positive control. The primers were designed and tested to be bear‐specific, thereby minimizing the risk of cross‐amplification in other species including humans. The high sensitivity and small amplicon sizes (100, 124, 160 base pairs) facilitate analysis of non‐invasively obtained DNA material. DNA from tissue and blood as well as from 30 non‐invasively collected hair and faeces yielded clear and easily interpretable results. The fragments were detected both by standard gel electrophoresis and automated capillary electrophoresis.  相似文献   

18.
The sexes of non‐ratite birds can be determined routinely by PCR amplification of the CHD‐Z and CHD‐W genes. CHD‐based molecular sexing of four species of auklets revealed the presence of a polymorphism in the Z chromosome. No deviation from a 1:1 sex ratio was observed among the chicks, though the analyses were of limited power. Polymorphism in the CHD‐Z gene has not been reported previously in any bird, but if undetected it could lead to the incorrect assignment of sex. We discuss the potential difficulties caused by a polymorphism such as that identified in auklets and the merits of alternative CHD‐based sexing protocols and primers.  相似文献   

19.
A common challenge in phylogenetic reconstruction is to find enough suitable genomic markers to reliably trace splitting events with short internodes. Here, we present phylogenetic analyses based on genomewide single‐nucleotide polymorphisms (SNPs) of an enigmatic avian radiation, the subspecies complex of Afrocanarian blue tits (Cyanistes teneriffae). The two sister species, the Eurasian blue tit (Cyanistes caeruleus) and the azure tit (Cyanistes cyanus), constituted the out‐group. We generated a large data set of SNPs for analysis of population structure and phylogeny. We also adapted our protocol to utilize degraded DNA from old museum skins from Libya. We found strong population structuring that largely confirmed subspecies monophyly and constructed a coalescent‐based phylogeny with full support at all major nodes. The results are consistent with a recent hypothesis that La Palma and Libya are relic populations of an ancient Afrocanarian blue tit, although a small data set for Libya could not resolve its position relative to La Palma. The birds on the eastern islands of Fuerteventura and Lanzarote are similar to those in Morocco. Together they constitute the sister group to the clade containing the other Canary Islands (except La Palma), in which El Hierro is sister to the three central islands. Hence, extant Canary Islands populations seem to originate from multiple independent colonization events. We also found population divergences in a key reproductive trait, viz. sperm length, which may constitute reproductive barriers between certain populations. We recommend a taxonomic revision of this polytypic species, where several subspecies should qualify for species rank.  相似文献   

20.
All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex‐linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole‐genome scans that the sex‐associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of ‘turnover’ of sex‐determination regions in animals. We performed whole‐genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex‐linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex‐associated SNPs revealed this to be an XY sex‐determining system. Estimated divergence times of X and Y haplotype sequences (6–7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex‐determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号