首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
It was previously demonstrated that insulins to which positive charge has been added by substituting B13 glutamic acid with a glutamine residue, B27 threonine with an arginine or lysine residue, and by blocking the C-terminal carboxyl group of the B-chain by amidation, featured a prolonged absorption from the subcutis of rabbits and pigs after injection in solution at acidic pH. The phenomenon is ascribed to a low solubility combined with the readiness by which these analogs crystallize as the injectant is being neutralized in the tissue. However, acid solutions of insulin are chemically unstable as A21 asparagine both deamidates to aspartic acid and takes part in formation of covalent dimers via alpha-amino groups of other molecules. In order to circumvent the instability, substitutions were introduced in position A21, in addition to those in B13, B27 and B30, challenging the fact that A21 asparagine has been conserved in this position throughout the evolution. Biological potency was retained when glycine, serine, threonine, aspartic acid, histidine and arginine were introduced in this position, although to a varying degree. In the crystal structure of insulin a hydrogen bond bridges the alpha-nitrogen of A21 with the backbone carbonyl of B23 glycine. In order to investigate the importance of this hydrogen bond for biological activity a gene for the single-chain precursor B-chain(1-29)-Ala-Ala-Lys-A-chain(1-21) featuring an A21 proline was synthesized. However, this single-chain precursor failed to be properly produced by yeast, pointing to the formation of this hydrogen bond as an essential step in the folding process. The stability of the A21-substituted analogs in acid solutions (pH 3-4) with respect to deamidation and formation of dimers was approximately 5-10 times higher than that of human insulin in neutral solution. The rate of absorption of most insulins is decreased by increasing the Zn2+ concentration of the preparation. However, one analog with A21 glycine showed first-order absorption kinetics in pigs with a half-life of approximately 25 h, independent of the Zn2+ concentration. The day-to-day variation of the absorption of this analog was significantly lower than that of the conventional insulin suspensions, a property that might render such an insulin useful in the attempts to improve glucose control in diabetics by a more predictable delivery of basal insulin.  相似文献   

2.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

3.
Insulin hexamethyl ester was digested by trypsin. The resulting desoctapeptide-(B23 - 30)-insulin pentamethyl ester was purified. This compound was digested by carboxypeptidase B to remove the arginine residue B22 at the end of the B chain. Then the N-terminal amino groups of the remaining desnonapeptide-(B22 - 30)-insulin pentamethyl ester were protected with the Boc residue. The free carboxyl group of the glutamic acid residue B21 of this product was coupled to the following synthetic tetrapeptide esters: Arg-Gly-Phe-Phe-OMe, Lys(Boc)-Gly-Phe-Phe-OMe, Orn(Boc)-Gly-Phe-Phe-OMe, Cit-Gly-Phe-Phe-OMe, Ala-Gly-Phe-Phe-OMe and Gly-Gly-Phe-Phe-OMe. The syntheses of these peptide esters are described. After removal of all protecting groups, despentapeptide-insulin (B22-Arg) and analogues of this product with variation in position B22 could be obtained. They were purified by column chromatography. The biological activities of these components were determined by the mouse fall test. In the case of despentapeptide insulin (C-terminus Arg-Gly-Phe-Phe), the activity rose to the expected value of 34%. The insulin variants with amino acid residues other than arginine in position B22 had much lower activities: with lysine 13%, with ornithine 12%, with citrulline 9%, with alanine 8% and with glycine 6%. Desnonapeptide-insulin by itself posses an activity of 3%. These results demonstrate once more the essential nature of arginine residue B22 for insulin activity.  相似文献   

4.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Analogs of a synthetic heptapeptide substrate corresponding to the sequence around a phosphorylation site in histone H2B were used to assess the substrate specificity of cGMP-dependent protein kinase. cGMP-dependent kinase phosphorylated the oligopeptide Arg-Lys-Arg-Ser32-Arg-Lys-Glu with favorable kinetic parameters as compared to those for cAMP-dependent kinase (Glass, D. B., and Krebs, E. G. (1979) J. Biol. Chem. 254, 9728-9738). The contribution of each amino acid to the ability of the peptide to be phosphorylated by cGMP-dependent or cAMP-dependent kinase was studied by replacement of individual residues and evaluation of the kinetic constants of the substituted peptides. Peptides containing acetylated lysine residues or nitroarginine residues were poor substrates for both kinases. Substitution of either arginine 29 or lysine 30 with alanine increased the Km values and decreased the Vmax values for both kinases. Substitution of lysine 34 with alanine increased the Vmax values for both kinases but did not affect the Km values for either enzyme. Substitution of the phosphorylatable serine with a threonine residue greatly depressed the Vmax for both kinases. Peptides in which arginine 31 or arginine 33 were replaced by an alanine residue revealed several apparent differences in the specificity requirements between cGMP-dependent and cAMP-dependent kinases.  相似文献   

6.
We have investigated the function of a leucine residue in the transit peptide of the rat mitochondrial malate dehydrogenase precursor using in vitro mutagenesis. Amino acid replacement of leucine 13 with glutamic acid and asparagine abolished import into mitochondria, while substitutions with proline, histidine, and arginine severely diminished uptake. In contrast, glutamine, tyrosine, valine, and alanine replacement resulted in normal levels of import, suggesting that there is a requirement for an uncharged residue at this position. Mutants involving rearrangements of the native sequence at positions 12-14 were imported as efficiently as the wild-type mitochondrial malate dehydrogenase, indicating that there was not an obligatory order of amino acid residues. However, deletion of leucine 13 resulted in diminished import. Binding studies with isolated mitochondria revealed that several position 13 mutants were deficient in binding to the mitochondrial surface, accounting for the reduced import of these proteins. This impairment could be distinguished from the effects due to decreased positive charge. We conclude that while translocation depends on the net positive charge, binding to the mitochondrial surface is mediated by uncharged residues within the transit peptides of mitochondrial precursor proteins.  相似文献   

7.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Amino-terminal processing in the yeast Saccharomyces cerevisiae has been investigated by examining numerous mutationally altered forms of iso-1-cytochrome c. Amino-terminal residues of methionine were retained in sequences having penultimate residues of arginine, asparagine, glutamine, isoleucine, leucine, lysine, and methionine; in contrast, the amino-terminal methionine residues were exercised from residues of alanine, glycine, and threonine and were partially excised from residues of valine. The results suggest the occurrence of a yeast aminopeptidase that removes amino-terminal residues of methionine when they precede certain amino acids. A systematic search of the literature for amino-terminal sequences formed at initiation sites suggests the hypothetical yeast aminopeptidase usually has the same specificity as the amino peptidase from bacteria and higher eukaryotes. Our results and the results from the literature search suggest that the aminopeptidase cleaves amino-terminal methionine when it precedes residues of alanine, glycine, proline, serine, threonine, and valine but not when it precedes residues of arginine, asparagine, aspartic acid, glutamine glutamic acid, isoleucine, leucine, lysine, or methionine. In contrast to the normal iso-1-cytochrome c and in contrast to the majority of the mutationally altered proteins, certain forms were acetylated including the following sequences: acetyl(Ac)-Met-Ile-Arg-, Ac-Met-Ile-Lys, Ac-Met-Met-Asn-, and Ac-Met-Asn-Asn-. We suggest yeast contains acetyltransferases that acetylates these mutant forms of iso-1-cytochromes c because their amino-terminal regions resemble the amino-terminal regions of natural occurring proteins which are normally acetylated. The lack of acetylation of closely related sequences suggest that the hypothetical acetyltransferases are specific for certain amino-terminal sequences and that the 3 amino-terminal residues may play a critical role in determining these specificities.  相似文献   

9.
Hydrophilic insulins, more positively charged than human insulin at neutral pH, have been prepared by substitution with basic amino acids at the termini of the B-chain and by blocking the C-terminal carboxyl group of the B-chain. The isoelectric pH of the insulin is thereby moved from 5.4 towards physiological levels. Slightly acid solutions of derivatives, in which charge has been added in the C-terminus of the B-chain, have a prolonged action in vivo, in particular if the carboxyl group is blocked. It is found that the prolonged-acting hydrophilic insulins crystallize instantly when the pH is adjusted to 7. The prolonged action is ascribed to this readiness to crystallization combined with a low solubility, which may be further decreased by increased concentration of zinc ions. Hydrophobic insulins have a prolonged action independent of the site of substitution even if the derivative is soluble at physiological pH. Some derivatives were prepared from porcine insulin by tryptic transpeptidation. N-terminal B-chain substituted insulins were prepared by alkylation of a biosynthetic single-chain insulin precursor, followed by tryptic transpeptidation rendering the double chain insulin derivative. The observed blood glucose lowering in the rabbits implies that neither N- nor C-terminal B-chain substitution results in substantial deterioration of biological potency. An index for the degree of protraction based on the blood glucose data is used to compare the insulins.  相似文献   

10.
The self-association of Zn-free human insulin, Zn-free insulin analogue B13-glutamine, 2-Zn insulin and cobalt(III) human insulin in the millimolar concentration range has been investigated by measuring the osmotic pressure at pH 7.5 in 0.05 M NaCl, 25 degrees C. The pH dependence of association has been measured in the pH range 6.8-9. For all insulins, except Zn-free human insulin, the major association state has been found to be the hexamer. Maximal association of hexamer has been observed for Zn-free human insulin at high concentration (2-7 mM) and physiological pH. At concentrations less than 1 mM and pH greater than 7.0, dissociation to a lower state than the hexamer is found. The conclusion has been drawn that, in the absence of metal ions, human insulin and insulin analogue B13-glutamine associate to the hexamer in the physiological pH range at concentrations in the millimolar range.  相似文献   

11.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ohta K  Masuda T  Ide N  Kitabatake N 《The FEBS journal》2008,275(14):3644-3652
Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.  相似文献   

13.
A tuberculin-active glycopeptide containing eight different amino acids and glucose was isolated from the protoplasm of Mycobacterium tuberculosis. A molecular weight of 4,000 to 5,000 was established by Sephadex gel filtration; other analyses showed a peptide to carbohydrate ratio of 9:1. These observations suggest a tentative composition of 3 to 4 residues of glucose, 12 residues each of aspartic and glutamic acids, 3 residues each of lysine, glycine, and serine, and 1 residue each of arginine, threonine, and alanine.  相似文献   

14.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

15.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

16.
Several mutants of tobacco mosaic virus that contain additional lysine residues as a result of mutations in the coat protein were investigated. Mutant E66 has a lysine residue replacing asparagine at position 140 when compared with the wild-type vulgare and this lysine residue reacts readily in the intact virus with methyl picolinimidate. Mutant B13a has two new lysine residues in the coat protein, replacing a glutamine at position 9 and an asparagine at position 33, whereas mutant B13b has the single replacement of glutamine by lysine at position 9. The lysine residue at position 9 in mutants B13a and B13b also reacts readily with methyl picolinimidate in the intact virus but the lysine at position 33 in mutant B13a did not react under these conditions. However, when the isolated coat protein from mutant B13a was treated with methyl picolinimidate, the lysine residue at position 33 did become modified, showing that the loss in reactivity of this residue towards the imidoester in the intact virus is a result of the assembly of the protein subunit into the virus structure. These results are compatible with and extend previous studies on the sero-logical properties of mutants of tobacco mosaic virus and illustrate the value of methyl picolinimidate as a reagent for probing the accessibility of amino groups in proteins. When intact tobacco mosaic virus (vulgare) was treated with p-iodobenzenesulphonyl chloride, no reaction with the lysine residues at positions 33 or 68 in the virus subunit could be detected but complete modification of tyrosine-139 was achieved. This result also extends previous studies with other reagents. The usefulness of the differential reactivity of the lysine residues in tobacco mosaic virus and its mutants as a means of attaching heavy-atom labels at chemically defined positions for subsequent X-ray-diffraction analysis and the implications of these experiments for deciphering the folding of the peptide chain in the virus subunit are discussed.  相似文献   

17.
The substrate specificity of rice embryo benzoyl-L-argininep-nitroanilide hydrolase (BAPAase) was examined. No endopeptidaseactivity toward protein substrates was detectable. Small peptides(less than 8 residues) and amide, ester substrates, however,were hydrolyzed very well at the carboxyl side of the lysineor arginine residue. No other peptide bond was hydrolyzed. TheN-terminal arginine of the substrates was released very slowly.Peptides with lysine or arginine penultimate to the C-terminalposition were hydrolyzed well and released an amino acid. Theoxidized insulin B chain (30 residues) was cleaved very slowlyat the C-terminal Lys-Ala bond, whereas an Arg-Gly bond at aninner position was not cleaved. The hydrolytic rate increasedafter the chain length was shortened by chymotryptic digestion.These results show that the rice embryo BAPAase is a novel enzymewhich has mixed endopeptidase-carboxypeptidase activity towardthe Arg-X and Lys-X bonds of small peptides, a characteristicintermediate between trypsin and serine carboxypeptidase. Thisenzyme may act in the breakdown of small peptides that havephysiological functions. (Received May 26, 1984; Accepted August 29, 1984)  相似文献   

18.
The crystallographic study of chimeric B72.3 antibody illustrated that there are three FR side-chain interactions with either CDR residue's side chain or main chain. For example, hydrogen bonds are formed between the hydroxyl group of threonine at L5 in FR1 and the guanidinal nitrogen group of arginine at L24 in CDR1, between the hydroxyl group of tyrosine at L36 in FR2 and the amide nitrogen group of glutamine at L89 in CDR3 and between the hydroxyl group of tyrosine at L71 in FR3 and the carbonyl group of isoleucine at L29 as well as the amide nitrogen group of serine at L31 in CDR1. Elimination of these hydrogen bonds at these FR positions may affect CDR loop conformations. To confirm these assumptions, we altered these FR residues by site-directed mutagenesis and determined binding affinities of these mutant chimeric antibodies for the TAG72 antigen. We found that the substitution of tyrosine by phenylalanine at L71, altering main-chain hydrogen bonds, significantly reduced the binding affinity for the TAG72 antigen by 23-fold, whereas the substitution of threonine and tyrosine by alanine and phenylalanine at L5 and L36, eliminating hydrogen bonds to side-chain atoms, did not affect the binding affinity for the TAG72 antigen. Our results indicate that the light-chain FR residue tyrosine at L71 of chimeric B72.3 antibody plays an important role in influencing the TAG72 antigen binding. Our results will thus be of importance when the humanized B72.3 antibody is constructed, since this important mouse FR residue tyrosine at L71 must be maintained.  相似文献   

19.
用不同的化学试剂修饰了柞蚕抗菌肽D分子中的色氨酸、精氨酸和赖氨酸等氨基酸残基。NBS修饰抗菌肽D,以及氨肽酶M对抗菌肽D作用的结果表明色氨酸残基对抗菌肽D抑制E.coli D31的作用影响不大。CHD和MLH对精氨酸和赖氨酸残基的修饰,导致抗菌肽D失去抑制E.coli的作用,但可逆地消除CHD和MLH的修饰作用后,抗菌肽D恢复了对E.coli D31的抑菌作用。这些结果初步认为,抗菌肽D抑菌作用与分子中的荷电性有关,改变了分子的电荷,也就同时失去了其抑菌功能。 此外,对精氨酸残基修饰的结果还表明,抗菌肽D的免疫原性与精氨酸残基有关。但是,抗菌肽D的免疫决定簇与其生物活性中心并不完全平行。  相似文献   

20.
The values of maximum frequencies, intensities, and other spectral parameters of the main absorption bands of amino acid residue side-chain groups have been obtained in the 1500–1800-cm?1 region for solutions in heavy water at pD 1–12. It is shown that absorption of residues of asparagine, glutamine, aspartic and glutamic acids, arginine, and tyrosine must be taken into account in quantitative studies of the infrared spectra of polypeptide and protein solutions in heavy water. Examples of separating out the amide I band for ribonuclease A in heavy water are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号