首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose‐grown agricultural bioenergy crops, short‐rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state‐and‐transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business‐as‐usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub‐associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose‐grown feedstocks. The conversion of agricultural lands on marginal soils to purpose‐grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape‐scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade‐offs among wildlife species, and the choice of focal species is likely to affect the results of landscape‐scale assessments. We offer general principals to consider when crafting lists of focal species for bioenergy impact assessments at the landscape scale.  相似文献   

2.
Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose‐grown woody crops grown on marginal lands. Results reveal trade‐offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business‐as‐usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose‐grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose‐grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land‐use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for biodiversity, and point to the challenges associated with evaluating bioenergy sustainability.  相似文献   

3.
Pine (Pinus spp.) plantations are a common type of managed forest in the southeastern United States that may supply habitat for early successional bird species, many of which are declining. To provide information about young pine plantations as bird habitat, we evaluated spring bird presence in 5 combinations of stand establishment practices during years 2 through 5 post-establishment in the Lower Coastal Plain of Mississippi, USA. We detected 38 species with point counts and compared bird metrics among establishment practices using mixed general linear models. Species richness, total relative abundance, and relative abundance of many species were greater by at least a factor of 1.5–4 in the chemical-only establishment practice than mechanically prepared establishment practices, and values declined by about 5–60% within mechanically prepared establishment practices as herbicide intensity increased. Tree and snag retention contributed to avian abundance and richness in the chemical-only establishment practice. Our study, in conjunction with past research, demonstrated the conservation value to early successional bird species of managed pine stands established with tree retention, indicating that silvicultural and wildlife habitat objectives can be met within the range of stand establishment treatments available to managers. © 2012 The Wildlife Society.  相似文献   

4.
Short‐rotation woody cropping (SRWC) refers to silvicultural systems designed to produce woody biomass using short harvest cycles (1–15 years), intensive silvicultural techniques, high‐yielding varieties, and often coppice regeneration. Recent emphasis on alternatives to fossil fuels has spurred interest in producing SRWC on privately owned and intensively managed forests of North America. We examined potential bird and small mammal response at the stand level to conversion of existing, intensively managed forests to SRWCs using meta‐analysis of existing studies. We found 257 effect sizes for birds (243 effect sizes) and mammals (14 effect sizes) from 8 studies involving Populus spp. plantations. Diversity and abundance of bird guilds were lower on short‐rotation plantations compared with reference woodlands, while abundance of individual bird species was more variable and not consistently higher or lower on SRWC plantations. Shrub‐associated birds were more abundant on SRWC plantations, but forest‐associated and cavity‐nesting birds were less abundant. Effects on birds appeared to decrease with age of the SRWC plantation, but plantation age was also confounded with variation in the type of reference forest used for comparison. Both guilds and species of mammals were less abundant on SRWC plantations. These conclusions are tentative because none of these studies directly compared SRWC plantations to intensively managed forests. Plantations of SRWCs could contribute to overall landscape diversity in forest‐dominated landscapes by providing shrubby habitat structure for nonforest species. However, extensive conversion of mature or intensively managed forests to SRWC would likely decrease overall diversity, especially if they replace habitat types of high conservation value.  相似文献   

5.
The understory of exotic tree plantations can have non‐negligible native species richness. Ecological restoration of these sites may include the harvest of trees, depending on the tradeoff between timber income and harvest impacts on biodiversity. This study aimed to investigate how a site can recover from harvest disturbance, by comparing the regeneration of woody species in the understory of two types of 37‐year‐old Pinus taeda plantation (P1 and P2, high and low relative density of pine seedlings in the understory, respectively), with stands that were similar to P2 but subjected to harvest and then abandoned for 15 years (R sites). Secondary forests (SF) were used as references. We sampled three different sites for each stand condition; soil chemical properties, estimations of litter mass, and canopy cover were measured. P1 had low species diversity, and P2 and R had 50 and 46% of SF richness, respectively. The R site contained few pine saplings and was floristically similar to P2; this indicated that 15 years was sufficient for the recovery of plant diversity to near pre‐harvesting levels. Soil fertility was highest in SF and lowest in P1. Thus old plantations of P. taeda with low relative density of pine juveniles can be cost‐effective starting points for restoration. Despite the destructive effects of pine harvest, recovery of native species can occur rapidly. In situations in which clearcutting of pine stands is not planned or possible, modest thinning of P. taeda adults and/or intensive thinning of juveniles could expedite restoration.  相似文献   

6.
Under the current accounting systems, emissions produced when biomass is burnt for energy are accounted as zero, resulting in what is referred to as the ‘carbon neutrality’ assumption. However, if current harvest levels are increased to produce more bioenergy, carbon that would have been stored in the biosphere might be instead released in the atmosphere. This study utilizes a comparative approach that considers emissions under alternative energy supply options. This approach shows that the emission benefits of bioenergy compared to use of fossil fuel are time‐dependent. It emerges that the assumption that bioenergy always results in zero greenhouse gas (GHG) emissions compared to use of fossil fuels can be misleading, particularly in the context of short‐to‐medium term goals. While it is clear that all sources of woody bioenergy from sustainably managed forests will produce emission reductions in the long term, different woody biomass sources have various impacts in the short‐medium term. The study shows that the use of forest residues that are easily decomposable can produce GHG benefits compared to use of fossil fuels from the beginning of their use and that biomass from dedicated plantations established on marginal land can be carbon neutral from the beginning of its use. However, the risk of short‐to‐medium term negative impacts is high when additional fellings are extracted to produce bioenergy and the proportion of felled biomass used for bioenergy is low, or when land with high C stocks is converted to low productivity bioenergy plantations. The method used in the study provides an instrument to identify the time‐dependent pattern of emission reductions for alternative bioenergy sources. In this way, decision makers can evaluate which bioenergy options are most beneficial for meeting short‐term GHG emission reduction goals and which ones are more appropriate for medium to longer term objectives.  相似文献   

7.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   

8.
Longleaf pine (Pinus palustris) savanna characterized by open-canopy, diverse herbaceous vegetation, and high amounts of bare soil once covered much of the southeastern United States Coastal Plain. The unique structural and vegetative conditions of this ecosystem support endemic reptiles and amphibians that have declined as longleaf pine forests have been lost or degraded. Private working pine (Pinus spp.) forests managed for timber production now occur throughout the southeastern United States and have replaced much of the historical longleaf pine savanna. The examination of herpetofaunal (reptile, amphibian) communities in private working loblolly pine (P. taeda) landscapes, particularly in the western Gulf Coastal Plain is lacking. Using repeated field surveys and hierarchical community occupancy models, we examined occupancy and species richness of herpetofauna across 81 sites spanning gradients of management practices, vegetative conditions, and soil composition in northwestern Louisiana, USA, 2017–2019. Young pine stands (<6 yr) exhibited structural characteristics most similar to mature longleaf pine reference sites (>30 yr), while mid-aged stands (13–26 yr) often featured closed canopy and dense midstory. Vegetation conditions varied widely depending on landscape characteristics and site-specific disturbance regimes. We documented 43 species of herpetofauna, including 9 open-pine-associated species. Occupancy of open-pine-associated herpetofauna was positively associated with open-canopy and understory conditions, and sandy soil area. Sites providing open-canopy conditions were often occupied by open-pine-associated species regardless of overstory type and disturbance method. Overall richness of herpetofauna was greatest at sites with moderate canopy cover outside of sandy soil regions. Working pine landscapes in the western Gulf Coastal Plain can support diverse herpetofaunal assemblages, including open-pine-associated species, when management practices maintain open-canopy conditions on sandy, upland soils. More broadly, our results provide insight into how forest management practices affect herpetofauna and may guide practices that can contribute to conservation value of working pine forests.  相似文献   

9.
This paper provides spatial estimates of potentially available biomass for bioenergy in Australia in 2010, 2030 and 2050 (under clearly stated assumptions) for the following biomass sources: crop stubble, native grasses, pulpwood and residues (created either during forest harvesting or wood processing) from plantations and native forests, bagasse, organic municipal solid waste and new short‐rotation tree crops. For each biomass type, we estimated annual potential availability at the finest scale possible with readily accessible data, and then aggregated to make estimates for each of 60 Statistical Divisions (administrative areas) across Australia. The potentially available lignocellulosic biomass is estimated at approximately 80 Mt per year, with the major contributors of crop stubble (27.7 Mt per year), grasses (19.7 Mt per year) and forest plantations (10.9 Mt per year). Over the next 20–40 years, total potentially available biomass could increase to 100–115 Mt per year, with new plantings of short‐rotation trees being the major source of the increase (14.7 Mt per year by 2030 and 29.3 Mt per year by 2050). We exclude oilseeds, algae and ‘regrowth’, that is woody vegetation naturally regenerating on previously cleared land, which may be important in several regions of Australia (Australian Forestry 77 , 2014, 1; Global Change Biology Bioenergy 7 , 2015, 497). We briefly discuss some of the challenges to providing a reliable and sustainable supply of the large amounts of biomass required to build a bioenergy industry of significant scale. More detailed regional analyses, including of the costs of delivered biomass, logistics and economics of harvest, transport and storage, competing markets for biomass and a full assessment of the sustainability of production are needed to underpin investment in specific conversion facilities (e.g. Opportunities for forest bioenergy: An assessment of the environmental and economic opportunities and constraints associated with bioenergy production from biomass resources in two prospective regions of Australia, 2011a).  相似文献   

10.
ABSTRACT Herbicides, commonly used for vegetation management in intensively managed pine (Pinus spp.) forests of the southeastern United States, with and without fire, may alter availability of quality forage for white-tailed deer (Odocoileus virginianus; deer), an economically and socially important game species in North America. Because greater forage quality yields greater deer growth and productivity and intensively managed pine forests are common in the southeastern United States, forest managers would benefit from an understanding of fire and herbicide effects on forage availability to improve habitat conditions for deer. Therefore, we evaluated independent and combined effects of fire and herbicide (i.e., imazapyr) on forage biomass and deer nutritional carrying capacity (CC) on land owned and managed by Weyerhaeuser NR Company in east-central Mississippi, USA. We used a randomized complete block design of 6 pine plantations (blocks) divided into 4 10-ha treatment plots to each of which we randomly assigned a treatment (burn-only, herbicide-only, burn + herbicide, and control). We estimated biomass (kg/ha) of moderate- and high-use deer forage plants during July of 1999–2008, then estimated CC for diets to support either body maintenance (6% crude protein) or lactation (14% crude protein) with a nutritional constraints model. Herbaceous forages responded positively to fire and herbicide application. In most years, CC estimates for maintenance and lactation were greater in burn + herbicide than in controls. Maintenance-level CC was always greater in burn + herbicide than in controls, except at 1 year posttreatment. Burn + herbicide was 2.6–8.3 times greater ( = 4.0) than control for lactation-level CC in 8 of 9 years posttreatment. We recommend fire and selective herbicides to increase high-quality deer forage in mid-rotation, intensively managed pine plantations.  相似文献   

11.
Grassland birds are in steep decline, with population declines reported in 74% of North American grassland species in the past 50 years. Declines are particularly severe in the eastern United States where they are influenced by habitat loss and alteration due to urbanization, forest regrowth, and agricultural intensification. The United States National Park Service maintains civil war battlefields in the eastern United States as historical and cultural parks that may also provide habitat refuge for grassland birds within an increasingly urbanized matrix. To assess the conservation importance of battlefield parks and the role of park management in sustaining grassland birds, we surveyed for 2 declining grassland-breeding species, eastern meadowlark (Sturnella magna) and grasshopper sparrow (Ammodramus savannarum), at 242 points across 4 battlefield parks in Maryland, Virginia, and West Virginia, USA, from 2014–2019 and in 2021. We modeled the effects of park management activities (prescribed fire, agricultural leases, and delayed harvest) and habitat and landscape characteristics on breeding-season occupancy. There was support for the influence of local habitat features, landscape, and management. Breeding-season occupancy of both species was consistently higher in hayfields and pasture than in row crops, and both species responded positively to hay and crop harvest delays intended for grassland bird conservation. Prescribed fire within the past 2 years had a positive effect on occupancy of grasshopper sparrows but did not influence eastern meadowlarks. Eastern meadowlarks responded to land cover at multiple spatial scales that are influenced by land use within and outside the parks. Management activities that maintain the parks' cultural goals, including partnerships between national parks and private agricultural operators, are likely to provide valuable habitat for these 2 obligate grassland birds.  相似文献   

12.
Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across these landscapes. However, influence of buffer width and structure of adjacent plantations on habitat use by birds is not well understood. We modeled probability of occupancy, while accounting for variable detection probabilities, for 16 bird species of regional conservation importance in the Ouachita Mountains of Arkansas, USA. We examined occurrence of breeding birds in streamside management zone (SMZ) buffers embedded in three structural classes of pine plantation: young open-canopy, closed-canopy, and older thinned plantations. Our occupancy models included a positive association with SMZ width for nine bird species associated with mature forests. Models for three early successional species (prairie warbler [Dendroica discolor], white-eyed vireo [Vireo griseus], and northern bobwhite [Colinus virginianus]) included a negative association with SMZ width. Occupancy models for Acadian flycatcher (Empidonax virescens), summer tanager (Piranga rubra), pine warbler (Dendroica pinus), prairie warbler, and northern bobwhite also included structural condition of adjacent plantations, but most species did not appear affected by condition of surrounding plantations. We found diverse responses among species to width of retained SMZs and structure of adjacent plantations; some species apparently benefitted from SMZs >100 m wide, while others benefitted from narrow buffers. Furthermore, most species traditionally associated with mature forests were common in narrow SMZs, regardless of width. Thus, optimal width of SMZs relative to avian conservation depends on the species of greatest conservation interest.  相似文献   

13.
Jack pine barrens, once common in northern lower Michigan, mostly have been converted to managed jack pine plantations. Management of the disturbances associated with logging provides the opportunity to maintain the unique plant assemblages of jack pine barrens and nest habitat of the federally endangered Kirtland's warbler. Studies indicate that Carex pensylvanica can develop into dense mats and strongly compete with other barrens species such as Vaccinium angustifolium, which seem to be important species for Kirtland's warbler nest locations. According to forest managers, the most important factors facilitating high cover of V. angustifolium and reducing cover of C. pensylvanica are the amount of shade produced by tree crowns before harvest (pre‐harvest shade), the length of time between harvest and planting (planting delay), and fire. We found that high or low levels of pre‐harvest shade had no effect on cover of either V. angustifolium or C. pensylvanica. Planting delays of at least three years following prescribed burns generally increased cover of V. angustifolium in forest plots, which are important for warbler nesting. Analysis of community composition in openings indicated that burning enhanced the growth of barrens species. We found only weak evidence for a negative correlation between the cover of V. angustifolium and C. pensylvanica on our study sites. The openings created in the jack pine plantation are important refugia for barrens flora that would likely be lost under forests managed strictly for jack pine. Maintenance of jack pine barrens flora and Kirtland's warbler nest habitat is possible within the context of a heavily managed forest plantation system.  相似文献   

14.
C4 perennial grasses are being considered as environmentally and economically sustainable high yielding bioenergy feedstocks. Temporal and spatial variation in yield across the conterminious United States is uncertain due to the limited number of field trials. Here, we use a semi‐mechanistic dynamic crop growth and production model to explore the potential of Miscanthus × giganteus (Greef et. Deu.) and Panicum virgatum L. across the conterminous United States. By running the model for 32 years (1979–2010), we were able to estimate dry biomass production and stability. The maximum rainfed simulated end‐of‐growth‐season harvestable biomass for M. × giganteus was ca. 40 Mg ha?1 and ca. 20 Mg ha?1 for P. virgatum. In addition, regions of the southeastern United States were identified as promising due to their high potential production and stability and their relative advantage when compared with county‐level maize biomass production. Regional and temporal variation was most strongly influenced by precipitation and soil water holding capacity. Miscanthus × giganteus was on average 2.2 times more productive than P. virgatum for locations where yields were ≥10 Mg ha?1. The predictive ability of the model for P. virgatum was tested with 30 previously published studies covering the eastern half of the United States and resulted in an index of agreement of 0.71 and a mean bias of only ?0.62 Mg ha?1 showing that, on average, the model tended to only slightly overestimate productivity. This study provides with potential production and variability which can be used for regional assessment of the suitability of dedicated bioenergy crops.  相似文献   

15.
Changes in land use patterns and vegetation can trigger ecological change in occupancy and community composition. Among the potential ecological consequences of land use change is altered susceptibility to occupancy by invasive species. We investigated the responses of three introduced mammals (red deer, Cervus elaphus; wild boar, Sus scrofa; and European hare, Lepus europaeus) to replacement of native vegetation by exotic pine plantations in the Patagonian forest‐steppe ecotone using camera‐trap surveys (8633 trap‐days). We used logistic regression models to relate species presence with habitat variables at stand and landscape scales. Red deer and wild boar used pine plantations significantly more frequently than native vegetation. In contrast, occurrence of European hares did not differ between pine plantations and native vegetation, although hares were recorded more frequently in firebreaks than in plantations or native vegetation. Presence of red deer and wild boar was positively associated with cover of pine plantations at the landscape scale, and negatively associated with mid‐storey cover and diversity at the stand scale. European hares preferred sites with low arboreal and mid‐storey cover. Our results suggest that pine plantations promote increased abundances of invasive species whose original distributions are associated with woodlands (red deer and wild boar), and could act as source or pathways for invasive species to new areas.  相似文献   

16.
Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site‐level characteristics, landscape factors, and land‐use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site‐level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red‐cockaded woodpecker in the southeastern United States. Land‐use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post‐agricultural sites; however, understory species composition was affected by historical connectivity, but only for post‐agricultural sites. The influences of management and restoration activities were only apparent once land‐use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post‐agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site‐level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land‐use history, and underscore the importance of considering land‐use history and landscape effects during restoration.  相似文献   

17.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   

18.
The feasibility of using plantation‐grown biomass to fuel bioenergy plants is in part dependent on the ability to predict the capacity of surrounding forests to maintain a sustainable supply. In this study, the potential productivity of Eucalyptus nitens (Deane and Maiden) Maiden plantations grown for bioenergy in a region of north‐west Spain was quantified using the 3‐PG process‐based model. The model was calibrated using detailed measurements from five permanent sample plots and validated using data from thirty‐five additional permanent sample plots; both sets represented the variability of climate and soils of the region. Plot scale analysis showed that the model was able to reasonably estimate above‐ground biomass and water use when compared with the observed data. Using a representative loam soil characteristic, a spatial analysis was then carried out to predict the potential productivity of E. nitens for bioenergy across a potential area for plantation establishment of 2550 km2 and to evaluate different management scenarios related to rotation length and stocking. An increase of only 1.9% in mean annual increment (MAI) of above‐ground biomass (WAGB) was found between stockings of 3000 and 5000 trees ha?1; for the lower stocking, MAI of WAGB increased 4% for rotation lengths between 6 and 8 years. Production was reduced by low summer rainfall and to a lesser extent by high summer and low winter temperatures, and vapour pressure deficit. Above‐ground biomass production was higher by around 12% when average rather than actual climate data were applied. The information from this study can be used to optimize forest management, determine regional relative potential productivity and contribute to decision‐making for bioenergy production from E. nitens plantations in north‐west Spain.  相似文献   

19.
Seed Bank Viability in Disturbed Longleaf Pine Sites   总被引:4,自引:0,他引:4  
Some of the most species‐rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for reestablishment through a seed bank may present a valuable restoration opportunity. Longleaf pine sites converted to loblolly pine plantations and non‐disturbed longleaf sites on the Coastal Plain of North Carolina were examined for seed bank presence and diversity. Conducting vegetation surveys and examining the seed bank using the seedling emergence technique allowed for verification of the seed bank presence, as well as evaluation of the quality of the seed bank on disturbed longleaf pine sites. Forty‐three species and over 1,000 individuals germinated, and the seed banks of both the disturbed and non‐disturbed stand types contained species not noted in the vegetation survey. Although many of these species were considered weedy and typical of disturbance, numerous taxa were indicative of stable longleaf pine communities. This study confirms both the presence and quality of seed banks in highly disturbed former longleaf pine sites, suggesting that the seed bank may be an important tool in restoration efforts.  相似文献   

20.
Across much of the southeastern U.S.A., sandhills have become dominated by hardwoods or invasive pine species following logging of Pinus palustris (longleaf pine) and fire suppression. At Eglin Air Force Base where this study was conducted, Pinus clausa (sand pine) has densely colonized most southeastern sandhill sites, suppressing groundcover vegetation. The objectives of this study were: to determine if suppressed groundcover vegetation recovers following the removal of P. clausa; to compare species composition and abundance in removal plots with that in reference, high quality sandhills; to test the assumption that recolonization by P. clausa seedlings decreases with proximity to the centers of removal plots; and to measure the survival of containerized P. palustris seedlings that were planted on P. clausa removal plots. One year post‐removal (1995), the number of plant species decreased by 50%, but then increased by 100% from 1995 to 1997, followed by a small reduction in 1998. The number of plant species was greater in reference plots than in removal plots prior to 1997. Eighty‐five percent of the original species were recorded 4 years post‐harvest in removal plots. Shrubs and large trees remained at low density after harvest. Densities of graminoids, legumes, other forbs, woody vines, and small trees increased after harvest. Plant densities of all life forms, except woody vines, were greater in reference plots than in removal plots. The density of recolonizing P. clausa seedlings 2–4 years post‐harvest significantly decreased with increasing proximity to the centers of removal plots. On average, 80% of planted P. palustris seedlings survived their first 2 years. Harvest of P. clausa followed by fire and the planting of P. palustris is a reasonably effective restoration approach in invaded sandhills. However, supplementary plantings of some herbaceous species may be necessary for full restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号