首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   16篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   16篇
  2014年   12篇
  2013年   20篇
  2012年   14篇
  2011年   13篇
  2010年   6篇
  2009年   7篇
  2008年   13篇
  2007年   7篇
  2006年   17篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   12篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有241条查询结果,搜索用时 22 毫秒
1.
The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l–1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.  相似文献   
2.
3.
In this study, a 24 factorial experimental design was employed in order to evaluate the influence of the reaction conditions and preparation method on alginate–chitosan hydrogel properties. Alginate content, pH, chitosan molecular weight and the hydrogel preparation method were the independent variables and the reaction yield, particle size, swelling degree and point of zero surface charge were the dependent variables. The results showed that hydrogels were spherical with an average diameter of 5.0 ± 2.0 μm. Reaction yield varied according to the parameters, and chitosan molecular weight showed the greatest influence. Furthermore, the swelling degree and point of zero surface charge showed a linear dependence on the alginate content. In this regard, the study showed that hydrogels with a specific charge and swelling degree can be obtained by controlling the alginate content using the equation here provided to give an enhanced and site-specific controlled drug release.  相似文献   
4.
Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.  相似文献   
5.
6.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   
7.
8.

Background

An accurate and affordable CD4+ T cells count is an essential tool in the fight against HIV/AIDS. Flow cytometry (FCM) is the “gold standard” for counting such cells, but this technique is expensive and requires sophisticated equipment, temperature-sensitive monoclonal antibodies (mAbs) and trained personnel. The lack of access to technical support and quality assurance programs thus limits the use of FCM in resource-constrained countries. We have tested the accuracy, the precision and the carry-over contamination of Partec CyFlow MiniPOC, a portable and economically affordable flow cytometer designed for CD4+ count and percentage, used along with the “CD4% Count Kit-Dry”.

Materials and Methods

Venous blood from 59 adult HIV+ patients (age: 25–58 years; 43 males and 16 females) was collected and stained with the “MiniPOC CD4% Count Kit-Dry”. CD4+ count and percentage were then determined in triplicate by the CyFlow MiniPOC. In parallel, CD4 count was performed using mAbs and a CyFlow Counter, or by a dual platform system (from Beckman Coulter) based upon Cytomic FC500 (“Cytostat tetrachrome kit” for mAbs) and Coulter HmX Hematology Analyzer (for absolute cell count).

Results

The accuracy of CyFlow MiniPOC against Cytomic FC500 showed a correlation coefficient (CC) of 0.98 and 0.97 for CD4+ count and percentage, respectively. The accuracy of CyFlow MiniPOC against CyFlow Counter showed a CC of 0.99 and 0.99 for CD4 T cell count and percentage, respectively. CyFlow MiniPOC showed an excellent repeatability: CD4+ cell count and percentage were analyzed on two instruments, with an intra-assay precision below ±5% deviation. Finally, there was no carry-over contamination for samples at all CD4 values, regardless of their position in the sequence of analysis.

Conclusion

The cost-effective CyFlow MiniPOC produces rapid, reliable and accurate results that are fully comparable with those from highly expensive dual platform systems.  相似文献   
9.
As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号