首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-delta (PKCdelta) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKCdelta activity. To understand the function of activated PKCdelta in apoptosis, we have used the PKCdelta-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKCdelta also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKCdelta cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKCdelta may be required for cleavage. PKCalpha and PKCbeta1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with G?6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKCdelta is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

2.
We have previously reported that murine peritoneal macrophages exposed to ultraviolet B (UV-B; 100 mJ/cm2) undergo apoptosis, as indicated by alterations in cell morphology, caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, DNA fragmentation, sustained activation of p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and inactivation of p42/44 MAPKs. It is now reported that macrophages undergoing UV-B-induced apoptosis show enhanced expression of protein kinase Cdelta (PKCdelta) in a time-dependent manner. Pretreatment of macrophages with PKCdelta-specific inhibitor rottlerin prior to the UV-B irradiation inhibits activation of caspase-3, PARP cleavage, DNA fragmentation and release of intracellular Ca2+. Inhibition of PKCdelta also blocks the sustained activation of p38 and JNK MAPKs as well as inactivation of p42/44 MAPKs. PKCalpha and PKCbeta1 expression also increases during UV-B-induced apoptosis in macrophages. Inhibition of these two isoforms with Go6976 slightly suppresses caspase-3 activation, PARP cleavage, DNA fragmentation and release of intracellular Ca2+, but has no effect on the sustained activation of p38/JNK MAPKs or inactivation of p42/44 MAPKs. It is, therefore, suggested that activation of PKCdelta might play an important role in the UV-B-induced apoptosis and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

3.
Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that sangivamycin may find clinical utility as a novel anti-cancer agent targeting PEL.  相似文献   

4.
5.
Protein kinase Cdelta (PKCdelta) is involved in the apoptosis of various cells in response to diverse stimuli. In this study, we characterized the role of PKCdelta in the apoptosis of C6 glioma cells in response to etoposide. We found that etoposide induced apoptosis in the C6 cells within 24 to 48 h and arrested the cells in the G(1)/S phase of the cell cycle. Overexpression of PKCdelta increased the apoptotic effect induced by etoposide, whereas the PKCdelta selective inhibitor rottlerin and the PKCdelta dominant-negative mutant K376R reduced this effect compared to control cells. Etoposide-induced tyrosine phosphorylation of PKCdelta and its translocation to the nucleus within 3 h was followed by caspase-dependent cleavage of the enzyme. Using PKC chimeras, we found that both the regulatory and catalytic domains of PKCdelta were necessary for its apoptotic effect. The role of tyrosine phosphorylation of PKCdelta in the effects of etoposide was examined using cells overexpressing a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). These cells exhibited decreased apoptosis in response to etoposide compared to cells overexpressing PKCdelta. Likewise, activation of caspase 3 and the cleavage of the PKCdelta5 mutant were significantly lower in cells overexpressing PKCdelta5. Using mutants of PKCdelta altered at individual tyrosine residues, we identified tyrosine 64 and tyrosine 187 as important phosphorylation sites in the apoptotic effect induced by etoposide. Our results suggest a role of PKCdelta in the apoptosis induced by etoposide and implicate tyrosine phosphorylation of PKCdelta as an important regulator of this effect.  相似文献   

6.
Here, we identified caspase-2, protein kinase C (PKC)delta, and c-Jun NH2-terminal kinase (JNK) as key components of the doxorubicin-induced apoptotic cascade. Using cells stably transfected with an antisense construct for caspase-2 (AS2) as well as a chemical caspase-2 inhibitor, we demonstrate that caspase-2 is required in doxorubicin-induced apoptosis. We also identified PKCdelta as a novel caspase-2 substrate. PKCdelta was cleaved/activated in a caspase-2-dependent manner after doxorubicin treatment both in cells and in vitro. PKCdelta is furthermore required for efficient doxorubicin-induced apoptosis because its chemical inhibition as well as adenoviral expression of a kinase dead (KD) mutant of PKCdelta severely attenuated doxorubicin-induced apoptosis. Furthermore, PKCdelta and JNK inhibition show that PKCdelta lies upstream of JNK in doxorubicin-induced death. Jnk-deficient mouse embryo fibroblasts (MEFs) were highly resistant to doxorubicin compared with wild type (WT), as were WT Jurkat cells treated with SP600125, further supporting the importance of JNK in doxorubicin-induced apoptosis. Chemical inhibitors for PKCdelta and JNK do not synergize and do not function in doxorubicin-treated AS2 cells. Caspase-2, PKCdelta, and JNK were furthermore implicated in doxorubicin-induced apoptosis of primary acute lymphoblastic leukemia blasts. The data thus support a sequential model involving caspase-2, PKCdelta, and JNK signaling in response to doxorubicin, leading to the activation of Bak and execution of apoptosis.  相似文献   

7.
Protein kinase Cdelta (PKCdelta) regulates cell apoptosis and survival in diverse cellular systems. PKCdelta translocates to different subcellular sites in response to apoptotic stimuli; however, the role of its subcellular localization in its proapoptotic and antiapoptotic functions is just beginning to be understood. Here, we used a PKCdelta constitutively active mutant targeted to the cytosol, nucleus, mitochondria, and endoplasmic reticulum (ER) and examined whether the subcellular localization of PKCdelta affects its apoptotic and survival functions. PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc induced cell apoptosis, whereas no apoptosis was observed with the PKCdelta-ER. PKCdelta-Cyto and PKCdelta-Mito underwent cleavage, whereas no cleavage was observed in the PKCdelta-Nuc and PKCdelta-ER. Similarly, caspase-3 activity was increased in cells overexpressing PKCdelta-Cyto and PKCdelta-Mito. In contrast to the apoptotic effects of the PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc, the PKCdelta-ER protected the cells from tumor necrosis factor-related apoptosis-inducing ligand-induced and etoposide-induced apoptosis. Moreover, overexpression of a PKCdelta kinase-dead mutant targeted to the ER abrogated the protective effect of the endogenous PKCdelta and increased tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. The localization of PKCdelta differentially affected the activation of downstream signaling pathways. PKCdelta-Cyto increased the phosphorylation of p38 and decreased the phosphorylation of AKT and the expression of X-linked inhibitor of apoptosis protein, whereas PKCdelta-Nuc increased c-Jun NH(2)-terminal kinase phosphorylation. Moreover, p38 phosphorylation and the decrease in X-linked inhibitor of apoptosis protein expression played a role in the apoptotic effect of PKCdelta-Cyto, whereas c-Jun NH(2)-terminal kinase activation mediated the apoptotic effect of PKCdelta-Nuc. Our results indicate that the subcellular localization of PKCdelta plays important roles in its proapoptotic and antiapoptotic functions and in the activation of downstream signaling pathways.  相似文献   

8.
Protein kinase C functions prominently in cell regulation via its pleiotropic role in signal transduction processes. Certain oncogene products resemble elements involved in transmembrane signaling, elevate cellular sn-1,2-diacylglycerol second messenger levels, and activate protein kinase C. Sangivamycin was unique among the nucleoside compounds tested in its ability to potently inhibit protein kinase C activity. Inhibition was competitive with respect to ATP for both protein kinase C and the catalytic fragment of protein kinase C prepared by trypsin digestion. Sangivamycin was a noncompetitive inhibitor with respect to histone and lipid cofactors (phosphatidylserine and diacylglycerol). Sangivamycin inhibited native protein kinase C and the catalytic fragment identically, with apparent Ki values of 11 and 15 microM, respectively. Sangivamycin was an effective an inhibitor of protein kinase C as H-7, an isoquinolinsulfonamide. Sangivamycin did not inhibit [3H]phorbol-12,13-dibutyrate binding to protein kinase C. Sangivamycin did not exert its action through the lipid binding/regulatory domain; inhibition was not affected by the presence of lipid or detergent. Unlike H-7, sangivamycin selectively inhibited protein kinase C compared to cAMP-dependent protein kinase. The discovery that protein kinase C is inhibited by sangivamycin and other antitumor agents suggests that protein kinase C may be a target for rational design of antitumor compounds.  相似文献   

9.
Lu W  Lee HK  Xiang C  Finniss S  Brodie C 《Cellular signalling》2007,19(10):2165-2173
Protein kinase C delta (PKCdelta plays a major role in the regulation of cell apoptosis and survival. PKCdelta is cleaved by caspase 3 to generate a constitutively active catalytic domain that mediates both its apoptotic and anti-apoptotic effects. The caspase cleavage site of PKCdelta in the hinge region is flanked by the two tyrosine residues, Y311 and Y332. Here, we examined the role of the phosphorylation of tyrosines 311 and 332 in the cleavage and apoptotic function of PKCdelta using the apoptotic stimuli, TRAIL and cisplatin. Tyrosine 332 was constitutively phosphorylated in the A172 and HeLa cells and was further phosphorylated by TRAIL and cisplatin. This phosphorylation was inhibited by the Src inhibitors, PP2 and SU6656, and by silencing of Src. Treatment of the A172 and HeLa cells with TRAIL induced cleavage of the WT PKCdelta and of the PKCdeltaY311F mutant, whereas a lower level of cleavage was observed in the PKCdeltaY332F mutant. Similarly, a smaller degree of cleavage of the PKCdeltaY332 mutant was observed in LNZ308 cells treated with cisplatin. Mutation of Y332F affected the apoptotic function of PKCdelta; overexpression of the PKCdeltaY332 mutant increased the apoptotic effect of TRAIL, whereas it decreased the apoptotic effect of cisplatin. Inhibition of Src decreased the cleavage of PKCdelta and modified the apoptotic responses of the cells to TRAIL and cisplatin, similar to effect of the PKCdeltaY332F mutant. These results demonstrate that the phosphorylation of tyrosine 332 by Src modulates the cleavage of PKCdelta and the sensitivity of glioma cells to TRAIL and cisplatin.  相似文献   

10.
11.
JNK和BAD(bcl-2相关死亡启动子)都是参与细胞凋亡的重要调控蛋白. 然而,二者在功能上的联系及其在细胞凋亡中的相互作用尚未见报导. 本研究证明, BAD可作为JNK的磷酸化底物, 与JNK相互作用, 协同调节紫外线(UV)诱导的细胞凋亡. 蛋白质印迹检测PARP (聚ADP核糖聚合酶)裂解, 以及流式细胞术检测细胞凋亡结果揭示, UV诱导的MEF细胞凋亡依赖JNK的激酶活性. siRNA敲降BAD的蛋白表达,可增加MEF细胞对UV 诱导的细胞凋亡的敏感性. UV处理的野生型MEF细胞抽提液(含JNK激酶活性)可催化GST-BAD底物发生磷酸化修饰, 而UV未处理的细胞抽提液却不能. 结果提示, UV激活的JNK活性可催化BAD磷酸化|体外合成的持续活化的JNK与GST-BAD体外共孵育结合质谱分析证明, JNK 可催化BAD蛋白的Thr-201磷酸化. 提示BAD是JNK的底物. 此外,野生型和T201A突变的BAD质粒转染BAD-/-细胞结果显示, BAD的T201磷酸化可抑制JNK激酶活性及其底物c-Jun的磷酸化, 提示BAD磷酸化对JNK具有负反馈调节作用. 上述结果证明,BAD作为底物可被UV激活的JNK激酶磷酸化|磷酸化BAD反过来又可抑制JNK的激酶活性, 负性调节细胞凋亡. 综上所述, BAD与JNK能够相互影响, 协同调控UV诱导的细胞凋亡.  相似文献   

12.
Pulse treatment with cadmium chloride followed by recovery caused apoptosis in U937 human promonocytic cells. In addition, the treatment-induced PKCdelta translocation from cytosol to membrane fraction, which was already detected at 30 min of treatment; and also caused PKCdelta cleavage to give a 41-kDa fragment, which was detected at 3-6 h of recovery, concomitantly with the execution of apoptosis. All these effects were reduced by the PKCdelta-specific inhibitor rottlerin. By contrast, rottlerin did not prevent the cadmium-provoked stimulation of the stress response (as measured by HSP70 expression), nor inhibited the generation of apoptosis by heat-shock, which failed to cause PKCdelta translocation. Cadmium chloride rapidly induced p38(MAPK) activation, which was not affected by rottlerin. By contrast, the p38(MAPK) inhibitor SB203580 reduced PKCdelta translocation and cleavage, indicating that p38(MAPK) activation precedes and regulates PKCdelta activation. It is concluded that PKCdelta mediates apoptosis induction by cadmium ions via early membrane translocation, and also possibly through late kinase proteolytic cleavage and phosphorylation on tyrosine residues.  相似文献   

13.
Sulindac sulfone (also known as exisulind) and its chemical derivatives are promising anticancer agents capable of inducing apoptosis in a variety of malignant cell types with minimal toxicity to normal cells. Here, we tested the ability of alpha-tocopheryl succinate (TOS), another promising anticancer agent, to sensitize colon cancer cells to exisulind-induced apoptosis. We found that sub-apoptotic doses of TOS greatly enhanced exisulind-induced growth suppression and apoptosis in the HCT116, LoVo and SNU-C4 human colon cancer cell lines. Our results revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8, -9 and -3. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor), z-IETD-FMK (a caspase-8 inhibitor) or z-LEHD-FMK (a caspase-9 inhibitor) blocked TOS and exisulind cotreatment-induced PARP cleavage and apoptosis. Furthermore, TOS/exisulind cotreatment induced JNK phosphorylation, while pretreatment with SP600151 (a JNK inhibitor) partially blocked cotreatment-induced caspase-dependent PARP cleavage and apoptosis. Taken together, these findings indicate that TOS sensitizes human colon cancer cells to exisulind-induced apoptosis. Apoptotic synergy induced by exisulind plus TOS seems likely to be mediated through a mechanism involving activation of caspases and JNK. S.-J. Lim, Y.-J. Lee both authors are contributed equally to this study.  相似文献   

14.
Myosin-based cell contractile force is considered to be a critical process in cell motility. However, for epidermal growth factor (EGF)-induced fibroblast migration, molecular links between EGF receptor (EGFR) activation and force generation have not been clarified. Herein, we demonstrate that EGF stimulation increases myosin light chain (MLC) phosphorylation, a marker for contractile force, concomitant with protein kinase C (PKC) activity in mouse fibroblasts expressing human EGFR constructs. Interestingly, PKCdelta is the most strongly phosphorylated isoform, and the preferential PKCdelta inhibitor rottlerin largely prevented EGF-induced phosphorylation of PKC substrates and MARCKS. The pathway through which EGFR activates PKCdelta is suggested by the fact that the MEK-1 inhibitor U0126 and the phosphatidylinositol 3-kinase inhibitor LY294002 had no effect on PKCdelta activation, whereas lack of PLCgamma signaling resulted in delayed PKCdelta activation. EGF-enhanced MLC phosphorylation was prevented by a specific MLC kinase inhibitor ML-7 and the PKC inhibitors chelerythrine chloride and rottlerin. Further indicating that PKCdelta is required, a dominant-negative PKCdelta construct or RNAi-mediated PKCdelta depletion also prevented MLC phosphorylation. In the absence of PLC signaling, MLC phosphorylation and cell force generation were delayed similarly to PKCdelta activation. All of the interventions that blocked PKCdelta activation or MLC phosphorylation abrogated EGF-induced cell contractile force generation and motility. Our results suggest that PKCdelta activation is responsible for a major part of EGF-induced fibroblast contractile force generation. Hence, we identify here a new pathway helping to govern cell motility, with PLC signaling playing a role in activation of PKCdelta to promote the acute phase of EGF-induced MLC activation.  相似文献   

15.
Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.  相似文献   

16.
Sindbis virus (SV) is an alpha virus used as a model for studying the role of apoptosis in virus infection. In this study, we examined the role of protein kinase C (PKC) in the apoptosis induced by SVNI, a virulent strain of SV. Infection of C6 cells with SVNI induced a selective translocation of PKCdelta to the endoplasmic reticulum and its tyrosine phosphorylation. The specific PKCdelta inhibitor rottlerin and a PKCdelta kinase-dead mutant increased the apoptosis induced by SVNI. To examine the role of the tyrosine phosphorylation of PKCdelta in the apoptosis induced by SVNI we used a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). PKCdelta5-overexpressing cells exhibited increased apoptosis in response to SVNI as compared with control cells and to cells overexpressing PKCdelta. SVNI also increased the cleavage of caspase 3 in cells overexpressing PKCdelta5 but did not induce cleavage of PKCdelta or PKCdelta5. Using single tyrosine mutants, we identified tyrosines 52, 64, and 155 as the phosphorylation sites associated with the apoptosis induced by SVNI. We conclude that PKCdelta exerts an inhibitory effect on the apoptosis induced by SV and that phosphorylation of PKCdelta on specific tyrosines is required for this function.  相似文献   

17.
We have previously shown that protein kinase C (PKC) acts upstream of caspases to regulate cisplatin-induced apoptosis. Since extracellular signal-regulated kinases (ERKs) have also been implicated in DNA damage-induced apoptosis, we have examined if ERK signaling pathway acts downstream of PKC in the regulation of cisplatin-induced apoptosis. PKC activator PDBu induced ERK1/2 phosphorylation which was inhibited by general PKC inhibitor bisindolylmaleimide and G? 6983 as well as the MEK inhibitor U0126 but not by the PKCdelta inhibitor rottlerin. Cisplatin caused a concentration-dependent activation of ERK1/2 in HeLa cells. The level of ERK2 was decreased in HeLa cells that acquired resistance to cisplatin (HeLa/CP). The MEK inhibitor U0126 inhibited cisplatin-induced ERK activation and attenuated cisplatin-induced cell death. Inhibition of PKCdelta by rottlerin or depletion of PKCdelta by siRNA inhibited cisplatin-induced ERK activation. These results suggest that cisplatin-induced DNA damage results in activation of ERK1/2 via PKCdelta.  相似文献   

18.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation.  相似文献   

19.
The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号