首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lentic odonates have larger and more northern ranges than lotic species   总被引:2,自引:0,他引:2  
Aim We analysed latitudinal range, centres of distribution and northern range boundaries of dragonflies and damselflies occurring in Europe and North America with respect to larval habitat (standing water = lentic and running water = lotic). As lentic water bodies are thought to be less predictable in space and time than lotic habitats, species adapted to standing waters depend on effective dispersal ability for long‐term survival. If species occurring in lentic habitats have a higher propensity for dispersal, then larger range sizes in lentic than in lotic species, as well as an increase in the proportion of lentic species with latitude, would be expected. Location Europe, North America. Methods Distributional and habitat data were collected from published sources for all odonates of Europe and North America. Species were assigned to lentic and lotic habitats according to the habitat of the larvae. From distribution maps we estimated the latitudinal range, centre of distribution and northern range boundary of each species. Differences in these distribution variables between lentic and lotic species were evaluated using anova . We related the proportion of lentic species by latitudinal interval in Europe, and by political unit (state, province) in North America, to area, altitudinal range, longitude (only for North America) and latitude by means of generalized linear models. Results Lentic damselflies and dragonflies had larger latitudinal spans, and more northern distribution centres and range boundaries, than lotic species. The proportion of lentic species increased with latitude. These findings were consistent between continents. Main conclusions Our results support previous findings that distribution patterns of freshwater species depend on habitat preference. Evolution of dispersal propensity according to habitat characteristics is the most likely explanation. However, at present, alternative explanations, such as an increase in lentic habitats with latitude, cannot be ruled out.  相似文献   

2.
Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large‐scale patterns of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic and lotic habitats across 25 pre‐defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple regression analyses. Results Species richness increased with habitat availability for lentic species but not for lotic species. Species richness increased with elevational range for lotic species but decreased for lentic species. For both groups, neither habitat availability nor diversity could account for previously reported latitudinal patterns in species richness. For lotic species, richness declined with latitude, whereas there was no relationship between habitat availability and latitude. For lentic species, richness showed a hump‐shaped relationship with latitude, whereas available habitat increased with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history, namely the recurrent European glaciations and possible differences in post‐glacial recolonization. The distributions of lentic species appear to be closer to equilibrium than those of lotic species. This lends further support to the hypothesis that lentic species have a higher propensity for dispersal than lotic species.  相似文献   

3.
A basic challenge in evolutionary biology is to establish links between ecology and evolution of species. One important link is the habitat template. It has been hypothesized, that the spatial and temporal settings of a habitat strongly influence the evolution of species dispersal propensity. Here, we evaluate the importance of the habitat type on genetic population differentiation of species using freshwater habitats as a model system. Freshwater habitats are either lentic (standing) or lotic (running). On average, lotic habitats are more stable and predictable over space and time than lentic habitats. Therefore, lentic habitats should favour the evolution of higher dispersal propensity which ensures population survival of lentic species. To test for such a relationship, we used extensive data on species' genetic population differentiation of lentic and lotic freshwater invertebrates retrieved from published allozyme studies. Overall, we analysed more than 150 species from all over the world. Controlling for several experimental, biological and geographical confounding effects, we always found that lentic invertebrates exhibit, on average, lower genetic population differentiation than lotic species. This pattern was consistent across insects, crustaceans and molluscs. Our results imply fundamental differences in genetic population differentiation among species adapted to either lentic or lotic habitats. We propose that such differences should occur in a number of other habitat types that differ in spatio-temporal stability. Furthermore, our results highlight the important role of lotic habitats as reservoirs for evolutionary processes and the potential for rapid speciation.  相似文献   

4.
  1. Previous macrophysiological studies suggested that temperature‐driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait–environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.
  2. We quantified the color lightness and body volume of 99 European dragon‐ and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent‐wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.
  3. The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait–environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.
  4. Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait‐based models, for improving our understanding of climate‐driven biological responses.
  相似文献   

5.
Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.  相似文献   

6.
Freshwater ascomycetes are important decomposers of dead woody and herbaceous debris in aquatic habitats. Despite evidence of their ecological importance, latitudinal, habitat and substrate distributional patterns of freshwater ascomycetes are poorly understood. In this study, we examined the latitudinal and habitat distributional patterns, and substrate recurrences of freshwater ascomycetes by collecting dead submerged woody and herbaceous debris in lentic and lotic habitats at five selected sites along a north-central-south, temperate–subtropical latitudinal ecotone in Florida. One hundred and thirty-two fungal taxa were collected during the study. Seventy-four were meiosporic and 56 were mitosporic ascomycetes, while two species were basidiomycetes. Canonical analyses of principal coordinates (CAP) and Sørenson’s similarity index of species based on presence/absence data revealed a high turnover in species composition between the northern and southern sites, indicating a change in species composition along the temperate–subtropical latitudinal ecotone of the Florida Peninsula. Results from the ordination analysis indicated that freshwater ascomycete community composition is not significantly different between lentic and lotic habitats in Florida. The geographically broadly distributed species and species commonly found in Florida occurred in both habitats, whereas a number of new or rare species occurred in either lentic or lotic habitats, but not both. The same freshwater ascomycete species did not necessarily occur on both woody and herbaceous debris; of the 132 taxa collected, 100 were reported only on woody debris; 14 species occurred exclusively on herbaceous debris; and 18 species were found on both woody and herbaceous debris in lentic or lotic habitats. Implications of data from this study to the conservation and knowledge of biodiversity for freshwater ascomycetes is discussed.  相似文献   

7.
Lentic habitats (standing water, such as ponds and lakes) differ from lotic habitats (running water; streams and rivers) in their spatiotemporal persistence, with lentic habitats being more ephemeral in evolutionary time. This habitat instability is thought to select for dispersal, and several phylogenetic and macroecological studies have suggested that high rates of dispersal are more characteristic of lentic than lotic species. We tested this hypothesis using a comparative population genetic and phylogeographic approach based on mitochondrial DNA for 59 aquatic beetle species, sampled across Madagascar. Species were classified as lotic (n = 25), lentic (n = 25), or lotolentic (associated with both running and standing water; n = 9). Hierarchical population genetic structure (AMOVA), nucleotide diversity (π), and geographic structure were compared among habitat types. Lotic species had significantly greater population structure (ФST = 0.55, hierarchical AMOVA) than lentic (ФST = 0.13) and lotolentic (ФST = 0.19) species using phylogenetic generalized least squares (PGLS) to correct for phylogeny. Body size was independent of habitat preference, and did not explain any of the intraspecific variation. A greater proportion of lotic species were endemic to Madagascar and lotic species had more pronounced geographic structure in their haplotype networks. The results indicate that dispersal is consistently lower among lotic species, independent of phylogenetic relatedness. This has macroevolutionary and biogeographical consequences for the freshwater fauna of this tropical biodiversity hotspot where remaining natural habitats are becoming increasingly isolated from one another.  相似文献   

8.
Macroinvertebrate diversity in headwater streams: a review   总被引:1,自引:0,他引:1  
1. Headwater streams are ubiquitous in the landscape and are important sources of water, sediments and biota for downstream reaches. They are critical sites for organic matter processing and nutrient cycling, and may be vital for maintaining the 'health' of whole river networks.
2. Macroinvertebrates are an important component of biodiversity in stream ecosystems and studies of macroinvertebrate diversity in headwater streams have mostly viewed stream systems as linear reaches rather than as networks, although the latter may be more appropriate to the study of diversity patterns in headwater systems.
3. Studies of macroinvertebrate diversity in headwater streams from around the world illustrated that taxonomic richness is highly variable among continents and regions, and studies addressing longitudinal changes in taxonomic richness of macroinvertebrates generally found highest richness in mid-order streams.
4. When stream systems are viewed as networks at the landscape-scale, α-diversity may be low in individual headwater streams but high β-diversity among headwater streams within catchments and among catchments may generate high γ-diversity.
5. Differing ability and opportunity for dispersal of macroinvertebrates, great physical habitat heterogeneity in headwater streams, and a wide range in local environmental conditions may all contribute to high β-diversity among headwater streams both within and among catchments.
6. Moving beyond linear conceptual models of stream ecosystems to consider the role that spatial structure of river networks might play in determining diversity patterns at the landscape scale is a promising avenue for future research.  相似文献   

9.
Most aquatic beetles in the family Dytiscidae are tightly associated either with running (lotic) or stagnant (lentic) water bodies. The range size of lotic species is known to be, on average, much smaller than that of lentic species, presumably as a result of differences in dispersal strategies in each habitat type. We explored possible effects of these differences on clade evolution and speciation rates by comparing species-level phylogenies based on cytochrome oxidase I (COI) and 16S rRNA mitochondrial genes for two genera, the lentic Ilybius and the lotic Deronectes. The expectation that species turnover is higher in lotic lineages due to their lower dispersal propensity compared to lentic species was not strongly supported. Deronectes displays a higher frequency of recent splits than Ilybius, consistent with the hypothesis, but the difference was not significant compared to expected patterns under a constant speciation rate null model. Similarly, when the degree of sympatry was plotted against relative node age, more allopatric splits were evident in the lentic Deronectes, suggesting a slower rate of range movement since speciation, but the differences were not significant. We discuss two explanations for our failure to detect differences between the two clades. First, current methods for analysing species-level phylogenies may be sensitive to taxonomic and sampling artefacts. Second, lentic and lotic clades may indeed display similar levels of species turnover despite occupying very different habitats at different spatial scales. More work is needed to investigate the effects of population level processes and spatial scale on macroevolutionary dynamics.  相似文献   

10.
Ecological diversification of aquatic insects has long been suspected to have been driven by differences in freshwater habitats, which can be classified into flowing (lotic) waters and standing (lentic) waters. The contrasting characteristics of lotic and lentic freshwater systems imply different ecological constraints on their inhabitants. The ephemeral and discontinuous character of most lentic water bodies may encourage dispersal by lentic species in turn reducing geographical isolation among populations. Hence, speciation probability would be lower in lentic species. Here, we assess the impact of habitat use on diversification patterns in dragonflies (Anisoptera: Odonata). Based on the eight nuclear and mitochondrial genes, we inferred species diversification with a model‐based evolutionary framework, to account for rate variation through time and among lineages and to estimate the impact of larval habitat on the potentially nonrandom diversification among anisopteran groups. Ancestral state reconstruction revealed lotic fresh water systems as their original primary habitat, while lentic waters have been colonized independently in Aeshnidae, Corduliidae and Libellulidae. Furthermore, our results indicate a positive correlation of speciation and lentic habitat colonization by dragonflies: speciation rates increased in lentic Aeshnidae and Libellulidae, whereas they remain mostly uniform among lotic groups. This contradicts the hypothesis of inherently lower speciation in lentic groups and suggests species with larger ranges are more likely to diversify, perhaps due to higher probability of larger areas being dissected by geographical barriers. Furthermore, larger range sizes may comprise more habitat types, which could also promote speciation by providing additional niches, allowing the coexistence of emerging species.  相似文献   

11.
Aim  Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size.
Location  North and South America.
Methods  We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models.
Results   Peak richness and the smallest- and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants.
Main conclusions  Hypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.  相似文献   

12.
We investigated the effects of contemporary and historical factors on the spatial variation of European dragonfly diversity. Specifically, we tested to what extent patterns of endemism and phylogenetic diversity of European dragonfly assemblages are structured by 1) phylogenetic conservatism of thermal adaptations and 2) differences in the ability of post‐glacial recolonization by species adapted to running waters (lotic) and still waters (lentic). We investigated patterns of dragonfly diversity using digital distribution maps and a phylogeny of 122 European dragonfly species, which we constructed by combining taxonomic and molecular data. We calculated total taxonomic distinctiveness and mean pairwise distances across 4192 50 × 50 km equal‐area grid cells as measures of phylogenetic diversity. We compared species richness with corrected weighted endemism and standardized effect sizes of mean pairwise distances or residuals of total taxonomic distinctiveness to identify areas with higher or lower phylogenetic diversity than expected by chance. Broken‐line regression was used to detect breakpoints in diversity–latitude relationships. Dragonfly species richness peaked in central Europe, whereas endemism and phylogenetic diversity decreased from warm areas in the south‐west to cold areas in the north‐east and with an increasing proportion of lentic species. Except for species richness, all measures of diversity were consistently higher in formerly unglaciated areas south of the 0°C isotherm during the Last Glacial Maximum than in formerly glaciated areas. These results indicate that the distributions of dragonfly species in Europe were shaped by both phylogenetic conservatism of thermal adaptations and differences between lentic and lotic species in the ability of post‐glacial recolonization/dispersal in concert with the climatic history of the continent. The complex diversity patterns of European dragonflies provide an example of how integrating climatic and evolutionary history with contemporary ecological data can improve our understanding of the processes driving the geographical variation of biological diversity.  相似文献   

13.
It has been hypothesized that species living in small lentic water bodies, because of the short-term geological persistence of their habitat, should show higher dispersal ability, with increased gene flow among populations and a less pronounced phylogeographical structure. Conversely, lotic species, living in more geologically stable habitats, should show reduced dispersal and an increased phylogeographical structure at the same geographical scales. In this work we tested the influence of habitat type in two groups of aquatic Coleoptera ( Nebrioporus ceresyi and Ochthebius notabilis groups, families Dytiscidae and Hydraenidae respectively), each of them with closely related species typical of lotic and lentic saline Western Mediterranean water bodies. We used mitochondrial cox1 sequence data of 453 specimens of 77 populations through the range of nine species to compare a lotic vs. a lentic lineage in each of the two groups. Despite the differences in biology (predators vs. detritivorous) and evolutionary history, in both lotic lineages there was a higher proportion of nucleotide diversity among than within groups of populations, and a faster rate of accumulation of haplotype diversity (as measured by rarefaction curves) than in the lentic lineages. Similarly, lotic lineages had a higher absolute phylogenetic diversity, more remarkable considering their smaller absolute geographical ranges. By comparing closely related species, we were able to show the effect of contrasting habitat preferences in two different groups, in agreement with predictions derived from habitat stability.  相似文献   

14.
Examination of latitudinal patterns in species richness, size, and distributional range of East Atlantic fish, based on a compilation of data encompassing the full latitudinal and depth distribution of 1746 East Atlantic fish species, showed that species richness declined towards higher latitudes at a rate of c 1 % of the number of species present, in five-degree bands, for each degree of latitude for both teleosts and elasmobranchs, regardless of habitat However, the latitudinal patterns in maximum fish size and latitudinal range differed between teleosts and elasmobranchs, and changed with habitat No clear evidence was obtained that the latitudinal range occupied increased with latitude, indicating that Rapoport's rule does not apply to E Atlantic fishes Rather, the latitudinal patterns in species richness, size, and distributional range of benthic Atlantic fish were depth-dependent, because species richness, average maximum size, and the average latitudinal range increased with depth and declined with latitude The importance of accounting for this depth-latitude covariation in the distribution of marine fish demonstrated here, together with recent evidence obtained for deep-sea benthic macrofauna, points to depth and latitude as the main factors in the distribution of marine animals  相似文献   

15.
Aim The contrasting habitat permanence over geological time‐scales of lotic and lentic habitats may impose different constraints on the dispersal ability of their macroinvertebrate populations, and ultimately on the degree of equilibrium with current climate. We aim to test for differences between species typical of either habitat type in their potential versus realized distributions as a surrogate measure of degree of climate equilibrium, both in refuges and more recently deglaciated areas. Location Western Europe. Methods We focus on 99 Iberian diving beetles (family Dytiscidae). A multidimensional envelope procedure was used to estimate their potential distributions, which were projected for different spatial scales. At the continental scale we calculated the percentage of countries with climatically suitable conditions for each species over those actually occupied (range filling). At the regional scale, we estimated realized distributions using: (1) convex hull polygons for Sweden and the Iberian Peninsula; and (2) generalized linear models for the Iberian Peninsula. Results In the Iberian Peninsula, differences in the degree of equilibrium with climatic conditions between lotic and lentic species were few, if any. However, at the continental scale we found significant differences, with lentic species closer to equilibrium than lotic species. In the recently deglaciated area (Sweden) the subset of species with ranges wide enough to encompass Iberia and Scandinavia were mostly lentic, and all were closer to climatic equilibrium without significant differences between habitat types. Main conclusions Our results show that, at continental scales, climate equilibrium is not concordant between the habitat types across western Europe. We hypothesize that: (1) the differences between refuge areas in dispersal ability are erased probably due to long‐term climatic stability, allowing enough time to reach equilibrium, and (2) the species with wide geographical ranges able to recolonize recently deglaciated areas should have the highest dispersal abilities, and are closer to climatic equilibrium.  相似文献   

16.
Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well‐differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage‐idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine‐scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.  相似文献   

17.
The Eocene–Oligocene sea-level fall has been viewed as a primary driver of biological succession. We used Anisogammaridae living in both marine and freshwater habitats to test the hypothesis that Eocene–Oligocene sea-level fall can explain the marine–freshwater habitat shift in the Far East. We obtained three mitochondrial and two nuclear fragments for 138 samples representing 31 species, covering marine and freshwater habitats from latitudes 24 to 50°N. The phylogenetic analyses revealed that freshwater Anisogammaridae is monophyletic. Divergence-time estimation and ancestral range reconstruction indicate that the family originated from a marine habitat in the North Pacific region during the Eocene and separated between marine and freshwater lineages at 38 Ma. The freshwater lineage diversified at 27 Ma, and further diverged into lotic and lentic clades. Our results suggest that the Eocene–Oligocene sea-level fall provided an opportunity for marine-derived Anisogammaridae to shift to new freshwater habitats. The freshwater anisogammarids dispersed from north to south, resulting in the restriction of current marine species restricted to the latitudes 35–50°N and the range of freshwater species in latitudes 24–40°N. Deep divergences within the freshwater lineage were related to the separation of lotic and lentic environments and the opening of the Japan Sea.  相似文献   

18.
Geographical patterns of species turnover in aquatic plant communities   总被引:1,自引:0,他引:1  
1. A classic theory in biogeography predicts that high latitude communities are unstable. This may be because of decreased species richness or decreased environmental predictability and productivity towards the poles.
2. We studied latitudinal patterns in long-term community persistence of aquatic vascular plants in 112 Finnish lakes, situated within a 1000-km range from the northernmost to the southernmost lake.
3. Contrary to theoretical predictions, we found that the turnover rate of plant species in 45 years was inversely related to latitude. That is, plant communities in northern lakes were more persistent than communities in southern lakes. When we used multiple regression to find the best predictors of species turnover rate (TR), latitude was the only variable that was highly significantly related to species turnover rate. Area, species number, water transparency, pH and change in transparency did not notably explain the gradient observed.
4. The latitudinal trend was mainly because of lower species immigration rates at higher latitudes, whereas extinction rate did not so strongly decrease with increasing latitude. Immigrations and extinctions in the lakes were not in balance: the species numbers between the 1930s and 1980s increased more strongly in the southern than northern lakes.
5. We suggest that the inverse relationship between latitude and plant species TR in Finland is most probably caused by human influence on lakes, especially eutrophication and immigration of new species in southern latitudes. In addition, although species richness per lake did not decrease towards the north, the total species pool probably does, which means that in the north there are fewer species that can actually immigrate.  相似文献   

19.
Species richness in ground water is still largely underestimated, and this situation stems from two different impediments: the Linnaean (i.e. the taxonomic) and the Wallacean (i.e. the biogeographical) shortfalls. Within this fragmented frame of knowledge of subterranean biodiversity, this review was aimed at (i) assessing species richness in ground water at different spatial scales, and its contribution to overall freshwater species richness at the continental scale; (ii) analysing the contribution of historical and ecological determinants in shaping spatial patterns of stygobiotic species richness across multiple spatial scales; (iii) analysing the role of β-diversity in shaping patterns of species richness at each scale analysed. From data of the present study, a nested hierarchy of environmental factors appeared to determine stygobiotic species richness. At the broad European scale, historical factors were the major determinants in explaining species richness patterns in ground water. In particular, Quaternary glaciations have strongly affected stygobiotic species richness, leading to a marked latitudinal gradient across Europe, whereas little effects were observed in surface fresh water. Most surface-dwelling fauna is of recent origin, and colonized this realm by means of post-glacial dispersal. Historical factors seemed to have also operated at the smaller stygoregional and regional scales, where different karstic and porous aquifers showed different values of species richness. Species richness at the small, local scale was more difficult to be explained, because the analyses revealed that point-diversity in ground water was rather low, and at increasing values of regional species richness, reached a plateau. This observation supports the coarse-grained role of truncated food webs and oligotrophy, potentially reflected in competition for food resources among co-occurring species, in shaping groundwater species diversity at the local scale. Alpha-diversity resulted decoupled from γ-diversity, suggesting that β-diversity accounted for the highest values of total species richness at the spatial scales analysed.  相似文献   

20.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号