首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rice field eel as a model system for vertebrate sexual development   总被引:3,自引:0,他引:3  
Complex developmental mechanisms of vertebrates are unraveled using comparative genomic approaches. Several teleosts, such as zebrafish, medaka and pufferfish, are used as genetic model systems because they are amenable to studies of gene function. The rice field eel, a freshwater fish, is emerging as a specific model system for studies of vertebrate sexual development because of its small genome size and naturally occurring sex reversal. Data presented here support the use of the rice field eel as another important fish model for comparative genome studies, especially in vertebrate sexual development. This model system is complementary rather than redundant.  相似文献   

2.
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.  相似文献   

3.
The emerging field of evolutionary developmental biology (evo-devo) continues to operate largely under a single paradigm. In this paradigm developmental regulatory genes and processes are compared among a collection of "model organisms" selected primarily on the basis of their historical utility in the study of development. This approach has proven to be extremely informative, revealing an unexpected deep evolutionary conservation among developmental genes and genetic systems. Despite its success, concern has been expressed regarding its limitations. We discuss the "model organism" paradigm in evo-devo research. Based on our interpretation of its limitations, we propose a separate but complementary approach that is centered on "model groups." These groups are selected on the basis of their taxonomic affinity and their relevance to questions of interest to evo-devo biologists. We further discuss the Tetraodontiformes (Teleostei, Pisces) as an example of a "model group" for the evo-devo study of vertebrate skeletal elements.  相似文献   

4.
Recent advances in cell and molecular biology have generated important tools to probe developmental questions. In addition, new genetic model systems such as Danio rerio now make large-scale vertebrate early developmental mutant screens feasible. Nonetheless, some developmental questions remain difficult to study because of the need for finer temporal, spatial, or tuneable control of gene function within a developmental system. New uses for old teratogens as well as novel chemical modulators of development have begun to fill this void.  相似文献   

5.
Medakafish as a model system for vertebrate developmental genetics   总被引:9,自引:0,他引:9  
Several teleosts, such as the zebrafish and the medakafish or medaka (Oryzias latipes), are used as vertebrate model systems in various fields of biology. The medaka is suitable for use in genomic studies because of its small genome size. Moreover, our recent results of small-scale mutagenesis in the medaka indicate that it is possible to identify mutations, the phenotypes of which could not be found in zebrafish mutants obtained by large-scale mutagenesis. An example is Oot (One-sided optic tectum), a maternal-effect mutation. In the Oot phenotype, bilateral symmetry is broken in the optic tectum in the early developmental stages, and either the left or right morphology is duplicated on both sides. Medaka inbred strains can be produced and used to study quantitative traits in vertebrate development. Data presented support the use of medaka as another important fish model for the study of vertebrate developmental genetics.  相似文献   

6.
The chicken genome and the developmental biologist   总被引:5,自引:0,他引:5  
Recently the initial draft sequence of the chicken genome was released. The reasons for sequencing the chicken were to boost research and applications in agriculture and medicine, through its use as a model of vertebrate development. In addition, the sequence of the chicken would provide an important anchor species in the phylogenetic study of genome evolution. The chicken genome project has its roots in a decade of map building by genetic and physical mapping methods. Chicken genetic markers for map building have generally depended on labour intensive screening procedures. In recent years this has all changed with the availability of over 450,000 EST sequences, a draft sequence of the entire chicken genome and a map of over 1 million SNPs. Clearly, the future for the chicken genome and developmental biology is an exciting one. Through the integration of these resources, it will be possible to solve challenging scientific questions exploiting the power of a chicken model. In this paper we review progress in chicken genomics and discuss how the new tools and information on the chicken genome can help the developmental biologists now and in the future.  相似文献   

7.
线粒体控制区在鱼类种内遗传分化中的意义   总被引:14,自引:0,他引:14  
线粒体DNA(mtDNA)作为分子标记已被广泛应用于各物种系统发生的研究。mtDNA控制区序列(D-Loop)以其较高的突变积累对于研究物种种内的遗传分化具有重要价值。鱼类是脊椎动物中最原始但在种属数量上又最占优势的类群,其物种繁多,分布广泛,起源复杂,研究其系统发生历来是令人饶有兴趣的课题。D-Loop在研究鱼类种内遗传分化中具有多方面的重要意义。近年来,已有越来越多的研究工作将D-Loop作为分子标记来探讨各种鱼类的种内遗传分化,并且获得了许多有启发性的结果。青海湖是我国内陆最大的咸水湖,湖中主要鱼类为青海湖裸鲤(Gymnocypris przewalskii),D-Loop分析初步结果显示青海湖及其周围河流中的裸鲤似乎没有新的种内遗传分化现象。   相似文献   

8.
9.
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.  相似文献   

10.
The vertebrate caudal skeleton is one of the most innovative structures in vertebrate evolution and has been regarded as an excellent model for functional morphology, a discipline that relates a structure to its function. Teleosts have an internally‐asymmetrical caudal fin, called the homocercal caudal fin, formed by the upward bending of the caudal‐most portion of the body axis, the ural region. This homocercal type of the caudal fin ensures powerful and complex locomotion and is thought to be one of the most important evolutionary innovations for teleosts during adaptive radiation in an aquatic environment. In this review, we summarize the past and present research of fish caudal skeletons, especially focusing on the homocercal caudal fin seen in teleosts. A series of studies with a medaka spontaneous mutant have provided important insight into the evolution and development of the homocercal caudal skeleton. By comparing developmental processes in various vertebrates, we propose a scenario for acquisition and morphogenesis of the homocercal caudal skeleton during vertebrate evolution.  相似文献   

11.
Zebrafish (Danio rerio) is a common research model in fish studies of toxicology, developmental biology, neurobiology and molecular genetics; it has been proposed as a possible model organism for nutrition and growth studies in fish. The advantages of working with zebrafish in these areas are their small size, short generation time (12–14 weeks) and their capacity to produce numerous eggs (100–200 eggs/clutch). Since a wide variety of molecular tools and information are available for genomic analysis, zebrafish has also been proposed as a model for nutritional genomic studies in fish. The detailed study of every species employed as a model organism is important because these species are used to generalize how several biological processes occur in related organisms, and contribute considerably toward improving our understanding of the mechanisms involved in nutrition and growth. The objective of this review is to show the relevant aspects of the nutrition and growth in zebrafish that support its utility as a model organism for nutritional genomics studies. We made a particular emphasis that gene expression and genetic variants in response to zebrafish nutrition will shed light on similar processes in aquacultured fish.  相似文献   

12.
This article introduces a special issue on zebrafish biology that attempts to integrate developmental genetics with comparative studies of other fish species. For zebrafish researchers, comparative work offers a better understanding of the evolutionary history of their model system. Comparative biologists can gain many insights from the developmental and genetic mechanisms revealed in zebrafish that have contributed to the huge range of morphological variation among fishes that has arisen over millions of years. These ideas are considered here in various contexts, including systematics, genome organization and the development of the nervous system, pigmentation, craniofacial skeleton and dentition. Studies of the zebrafish in phylogenetic context provide an opportunity for synergy between communities using these two fundamentally different approaches.  相似文献   

13.
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.  相似文献   

14.
This contribution stems from the personal experience of the author regarding how he became acquainted with embryology and how he finally entered the field of developmental biology. It reports his feelings as a student of the Histology and Embryology course as it was taught in the late 1970s, and his present efforts in teaching developmental biology to university students. In the Developmental Biology course at Pisa University today, students are taught the tissue, molecular and genetic mechanisms that regulate development of several model systems. Drosophila is introduced at the beginning, because of the great knowledge that it has brought to the unraveling of the molecular aspects of development and because it allows several basic concepts to be introduced, and vertebrate systems follow. Other topics include the classic experiments on amphibian systems, which are explained in the light of recent molecular advances, as well as the genetically more versatile vertebrate systems such as the mouse.  相似文献   

15.
Lampreys are a group of aquatic chordates whose relationships to hagfishes and jawed vertebrates are still debated. Lamprey embryology is of interest to evolutionary biologists because it may shed light on vertebrate origins. For this and other reasons, lamprey embryology has been extensively researched by biologists from a range of disciplines. However, many of the key studies of lamprey comparative embryology are relatively inaccessible to the modern scientist. Therefore, in view of the current resurgence of interest in lamprey evolution and development, we present here a review of lamprey developmental anatomy. We identify several features of early organogenesis, including the origin of the nephric duct, that need to be re-examined with modern techniques. The homologies of several structures are also unclear, including the intriguing subendothelial pads in the heart. We hope that this review will form the basis for future studies into the phylogenetic embryology of this interesting group of animals.  相似文献   

16.
Nuclear receptors--a perspective from Drosophila   总被引:2,自引:0,他引:2  
  相似文献   

17.
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.  相似文献   

18.
Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.  相似文献   

19.
20.

Background  

DAX1 (NR0B1), a member of the nuclear receptors super family, has been shown to be involved in the genetic sex determination and in gonadal differentiation in several vertebrate species. In the aquaculture fish European sea bass, Dicentrarchus labrax, and in the generality of fish species, the mechanisms of sex determination and differentiation have not been elucidated. The present study aimed at characterizing the European DAX1 gene and its developmental expression at the mRNA level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号