首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cephalosporium maydis infects young maize plants easily, but as plants age fewer are infected and none after approx. 50 days from sowing. The mesocotyl and seminal, fibrous and adventitious roots are attacked, especially when there is damage or much inoculum. Most penetration occurs where roots are elongating and emerge from the mesocotyl or from fibrous roots. At first the fungus grows superficially on roots, producing hyphae with short, brown, thick-walled, and swollen cells. After penetrating, the fungus spreads towards the xylem, where it grows slowly at first but after 5 weeks grows faster upwards.
C. acremonium causes black-bundle disease of maize. It seems to infect plants growing in unfavourable conditions but the details remain uncertain. The percentage of plants infected was not related to the amount of inoculum and the fungus may not be a primary parasite. The sterile culture filtrate of the fungus produces vascular discoloration and wilt of maize seedlings.  相似文献   

2.
Summary Methods for countingAzotobacter species in soil have been examined. The highest counts were obtained from soil suspensions shaken in sterile distilled water containing 10-g glass beads and plated on to glucose agar. Mannitol has been rejected as a suitable substrate in agar media because it gives lower counts of Azotobacter than glucose, an effect which is further enhanced by drying the agar plates. A clear medium free from precipitated phosphate and CaCO3 is recommended for the agar-plate method; the Azotobacter count is affected by the phosphate concentration.The agar-plate and dilution-tube methods were compared; the latter is less accurate but more convenient when many soil samples have to be examined.  相似文献   

3.
Abstract. 1. Developmental times from egg to adult eclosion were established for eight Dalbulus leafhopper species on maize (Zea mays) and its perennial, gamagrass relative, Tripsacum dactyloides. Experiments were conducted with a 16 h day (25–27°C) and an 8 h night (21–22°C).
2. Developmental times were shortest for the maize specialists, c. 26 days for D. maidis and c. 27 days for D. elimatus, and longest for the Tripsacum specialists, c. 32 days for D. tripsacoides, c. 34 days for D. quinquenotatus and c. 40 days for D. guzmani. Developmental times were intermediate for D. gelbus, D. longulus and D. guevarai, species that utilize both maize and Tripsacum as field hosts.
3. For all species, development was significantly faster on maize (species mean 29 days) than on T. dactyloides (species mean 34 days).
4. D. maidis and D. elimatus developed significantly faster (c. 3 days) on maize than on its close perennial relative, Z. diploperennis.
5. As measured by a 48 h oviposition period, D. maidis, D. elimatus and D. gelbus produced significantly more progeny on maize than on gamagrass. D. quinquenotatus produced more progeny on T. dactyloides than on maize. D. maidis and D. elimatus produced more progeny on maize than on Z. diploperennis.
6. These studies provide support for the hypothesis which predicts that herbivorous insects that specialize on annual plants will have a shorter generation time and be more fecund than perennial specialists. The genus Dalbulus appears to be composed of species that fit an r-K continuum, with maize specialists and Tripsacum specialists at opposite ends of the continuum.  相似文献   

4.
The interaction between Fusarium oxysporum (cause of cotton wilt) and Cephalosporium maydis (cause of maize late-wilt) on cotton roots is associated with an appreciable decrease in the severity of the cotton wilt disease. Reduction in infection is more pronounced when the latter fungus precedes the former in the soil than when they are inoculated simultaneously. C. maydis exerts little or no such effect when it follows F. oxysporum in the soil. C. maydis grows on the surface of cotton roots near growing points as a root-surface inhabitant. Dark red lesions are produced but these disappear, as does the fungus, when the root becomes hardened either naturally or in response to the growth of the fungus on the surface. The presence of the fungus is associated with increased production of root laterals. Cotton plants, including those which may appear healthy, show only mild internal symptoms of Fusarium infection when grown in soil inoculated with the two fungi, suggesting that the decreased severity of wilt is largely due to increased tolerance of the plants to infection with the disease as a result of increased number of root laterals. It is also possible that cotton roots with C. maydis on their surface become less suitable for the progress of F. oxysporum. F. oxysporum produces in culture a metabolite inhibitory to C. maydis. This may partly account for the little effect that the latter fungus exerts on the severity of wilt when it follows F. oxysporum in the soil. It appears that the interaction between F. oxysporum and C. maydis does not affect the pathogenicity of the latter fungus to maize.  相似文献   

5.
6.
以关中平原持续4年的小麦、玉米(麦玉)秸秆还田中长期定位试验为基础,研究了麦玉秸秆9种不同还田方式对土壤总有机碳(TOC)、活性有机碳(LOC)含量和活性有机碳分配比例(LOC/TOC)、总有机碳储量(SCS)及碳库管理指数(CPMI)的影响.结果表明: 麦玉秸秆还田均可显著提高土壤(0~30 cm)TOC、LOC含量和SCS,且土壤有机碳主要集中于耕层(0~20 cm);麦玉秸秆双季还田的TOC、LOC含量和SCS显著高于单季还田和双季均不还田,其中,与双季均不还田相比,小麦秸秆粉碎还田 玉米秸秆深松还田的TOC、LOC含量和SCS提高幅度最显著.在0~10和10~20 cm土层中,小麦秸秆粉碎还田 玉米秸秆深松还田的CPMI显著高于其他处理,其中,小麦秸秆粉碎还田较其不还田可使CPMI提高19.1%和67.9%,玉米秸秆深松还田较其不还田可提高22.6%和32.4%.相关性分析显示,CPMI较LOC/TOC更能有效表征0~30 cm土层土壤有机碳的固持和转化关系.从提高本地区土壤有机碳固持量角度来看,小麦秸秆粉碎还田 玉米秸秆深松还田为最佳还田方式.  相似文献   

7.
大田环境下转Bt基因玉米对土壤酶活性的影响   总被引:2,自引:0,他引:2  
颜世磊  赵蕾  孙红炜  田晓燕  李凡  路兴波 《生态学报》2011,31(15):4244-4250
在大田自然条件下,比较研究了转Bt基因玉米和非转基因亲本玉米在种植和秸秆分解时对土壤酶活性影响的差异。结果表明,与亲本非转基因玉米相比,在各生育期内种植转Bt玉米对土壤蛋白酶和土壤脲酶活性均没有显著影响;在喇叭口期和抽雄期,土壤蔗糖酶和土壤酸性磷酸酶活性显著提高。在秸秆还田后,两种玉米秸秆对土壤酸性磷酸酶活性的影响没有显著差异,但使用转Bt玉米秸秆的土壤蔗糖酶、土壤脲酶和土壤蛋白酶的活性则有显著提高。与亲本玉米相比,在所有观测期内,种植Bt玉米及秸秆还田对土壤酶活性的影响,在影响的幅度及趋势上随玉米生育期和土壤酶种类的不同而产生差异,但没有观测到显著不利影响;商业化Bt玉米的环境释放仍有待长期定位观测和评价。  相似文献   

8.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

9.
秸秆还田对土壤有机碳不同活性组分储量及分配的影响   总被引:3,自引:3,他引:0  
王虎  王旭东  田宵鸿 《生态学杂志》2014,25(12):3491-3498
通过田间试验,研究了不同秸秆还田模式下土壤溶解性有机碳(DOC)、颗粒有机碳(POC)和矿物结合有机碳(MOC)储量及其在总有机碳(TOC)中的分配比例.结果表明: 相对于翻压还田(WR),小麦秸秆覆盖还田(WM)0~20 cm耕层TOC和MOC储量显著降低,降幅为4.1%和9.7%,DOC和POC储量显著提高,增幅为207.7%和11.9%;20~40 cm犁底层TOC和POC储量显著提高.玉米秸秆覆盖还田(MM)与MR相比,犁底层TOC和MOC储量显著提高,增幅为13.6%和14.6%.小麦-玉米秸秆均覆盖还田(WM-MM)相对于均翻压还田(WR-MR),耕层TOC和MOC储量显著降低,降幅为8.5%和10.3%.玉米秸秆还田耕层TOC和POC储量显著高于小麦秸秆还田.与对照(秸秆不还田)相比,6种还田模式耕层TOC储量增幅为5.2%~18.0%,差异达显著水平;除WM和MM模式外,犁底层TOC储量显著降低(降幅8.0%~11.5%).6种还田模式下土壤耕层DOC储量及DOC/TOC比值显著降低,在WM和WM-MM还田模式下耕层POC储量显著提高、POC/TOC比值增大,WR模式的耕层MOC储量显著提高、MOC/TOC比值增大,其余3种模式耕层POC和MOC储量均显著提高.秸秆覆盖还田有利于土壤有机碳活性组分积累,翻压还田有利于较稳定性有机碳组分积累.在提高关中地区农田TOC储量方面,玉米秸秆还田好于小麦秸秆还田、小麦-玉米秸秆翻压还田好于覆盖还田.  相似文献   

10.
Conservation tillage in its version of permanent bed planting under zero-tillage with crop residue retention has been proposed as an alternative wheat production system for northwest Mexico. However, little is known about the dynamics of C and N in soils under wheat/maize on permanent beds (PB) where straw was burned, removed, partly removed or retained, as opposed to conventionally tilled beds (CTB) where straw was incorporated. We investigated the dynamics of soil C and N and normalized difference vegetative index (NDVI) crop values in zero-tilled PB and CTB after 26 successive maize and wheat crops. Organic C and total N were respectively, 1.15 and 1.17 times greater in PB with straw partly removed and with straw retained on the surface, than in CTB with straw incorporated. Organic C and total N were 1.10 times greater in soils with 300 kg N ha−1 added than in unfertilized soil. Cumulative production of CO2 was lower under CTB with straw incorporated than under PB treatments, and CO2 production increased with increments in inorganic fertilizer. The N-mineralization rate was 1.18 times greater than in unamended soils when 150 kg inorganic N ha−1 was applied, and 1.48 times greater when 300 kg inorganic N ha−1 was added. The N-mineralization rate was significantly (1.66 times) greater in PB where the straw was burned or retained on the surface than in CTB where the straw was incorporated, but significantly (1.25 times) lower than in PB with straw partly removed. The NDVI values reached a maximum 56 days after planting and decreased thereafter. The NDVI for unfertilized soil were similar for CTB with straw incorporated, PB with straw partly removed, and PB with straw retained on the surface, but significantly lower for PB with straw burned and PB with straw removed. In soils to which 150 or 300 kg N ha−1 was added, NDVI was significantly lower for PB with straw burned than for other treatments. Among other things, this suggests the utility of rotating maize or wheat with crops whose residues have lower C–N ratios, thus avoiding immobilization of large amounts of N for extended periods. PB with residue burning, however, is an unsustainable practice leading to low crop performance and soil and environmental degradation.  相似文献   

11.
为探究生防真菌单列毛壳菌(Chaetomium uniseriatum)对秸秆降解和玉米(Zea mays)生长的影响, 将单列毛壳菌接种到玉米盆栽土壤中, 其它条件不变, 以保证单一变量。于拔节期和抽雄期进行采样, 通过测定土壤有机碳、土壤可溶性碳/氮、微生物量碳/氮以及酶活性, 探究接种单列毛壳菌对土壤生物化学指标的影响。在抽雄期对秸秆降解率、地上部生物量、叶片SPAD值、玉米根系激素含量及根系转录组进行分析, 探究接种单列毛壳菌对秸秆降解和玉米植株生长发育的影响。结果表明, 接种单列毛壳菌后, 土壤养分含量未出现显著性变化, β-葡萄糖苷酶(β-GC)活性显著降低; 抽雄期玉米地上部生物量、叶片SPAD值以及秸秆降解率均显著高于对照组; 玉米根系生长激素(IAA)和玉米素(ZR)含量均显著低于对照组。不同处理下玉米根系转录组分析筛选得到990个差异表达基因(383个基因表达上调, 607个基因表达下调); 对差异基因进行GO富集分析, 得到5个植物激素相关的条目; KEGG富集分析得到1个与植物激素相关的通路(P value<0.05, Q value<0.05)。综上, 单列毛壳菌通过促进秸秆降解以及调控作物根系激素响应基因的表达, 进而促进玉米生长。  相似文献   

12.
通过在甘肃引黄灌区灰钙土2015—2017年的田间试验,研究深松35 cm秸秆还田、深松35 cm秸秆不还田与传统旋耕秸秆不还田对土壤紧实度、容重、入渗率和0~100 cm土层土壤水分、玉米产量、养分吸收量的影响.结果表明: 与深松35 cm秸秆不还田及旋耕秸秆不还田相比,深松35 cm秸秆还田使0~40 cm土层土壤紧实度和容重降低最明显,2017年收获后紧实度与容重较2015年试验前分别下降42.6%、7.0%,且2016和2017年播种前与收获后0~40 cm土层紧实度和容重的变幅最小,紧实度变异系数平均为6.1%,容重为3.2%,土壤入渗率较旋耕秸秆不还田提高33.6%;深松35 cm秸秆还田可显著提高春秋两季0~100 cm土层剖面含水量,降低剖面水分变异,0~100 cm土层土壤贮水量较旋耕秸秆不还田春季增加15.5%,秋季增加5.6%,水分利用效率提高32.4%;此外,深松35 cm秸秆还田能促进玉米生产,较旋耕秸秆不还田的经济产量两年平均分别增产25.6%,生物产量提升33.3%,玉米氮、磷、钾养分吸收量分别提高49.6%、51.5%和37.6%.综上,深松35 cm秸秆还田能改善物理土壤特性,稳定耕层物理性状,提高0~100 cm土层剖面水分含量及春秋两季土壤平均贮水量,降低水分变异,是促进玉米水肥高效利用,实现高产的最优措施,为甘肃引黄灌区耕层构建技术的深入研究提供理论依据.  相似文献   

13.
通过2年田间定位试验,研究了冀东地区小麦 玉米轮作制度下,不同促腐条件下玉米秸秆配施化肥直接还田对土壤微生物量C、N、P动态变化的影响,并讨论了其与土壤养分和酶活性的关系.结果表明,秸秆配施化肥并调节其C/N条件下,施用促腐剂处理作物各生育期土壤微生物量C、N、P均表现出高于未施用处理的趋势,并使微生物量N、P达到高峰期的时间提前,对土壤养分调控效果较好.土壤微生物量C、N、P与土壤酶活性在作物各生育期均表现为显著和极显著正相关关系,但与土壤碱解氮、有效磷的相关性受到施肥制度和作物生长的强烈影响.  相似文献   

14.
S ummary : The ability of micro-organisms to use sulphamic acid in the form of the sodium salt as a source of nitrogen appeared to be generally uncommon, but certain strains of Aureobasidium ( Pullularia ) pullulans and Cephalosporium acremonium (?), and also two unidentified species of Achromobacter and Flavobacterium , were found to do so.
A. pullulans utilized ammonium and sulphamate nitrogen equally well, but growth with sulphamate did not become vigorous until after a long period of induction, even though the inoculum was produced on a sulphamate medium. The fungi as well as the bacteria converted the sulphur of the sulphamate ion to sulphate in approximately equimolar proportion to the amount of assimilated nitrogen.
Sulphamate utilizing strains of A. pullulans were found widely distributed on autumn leaf material but much less so in soil.  相似文献   

15.
Straw mulching is an effective measure to conserve soil moisture. However, the existence of straw on the soil surface also affects soil temperature, which in turn influences crop growth, especially of winter crops. Five‐year field experiments (2000–2005) investigated the effects of straw mulching and straw mass on soil temperature, soil evaporation, crop growth and development, yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) at Luancheng Station on the North China Plain. Soil is a moderately well‐drained loamy soil with a deep profile at the station. Two quantities of mulch were used: 3000 kg ha?1 [less mulching (LM)] and 6000 kg ha?1 [more mulching (MM)], representing half and all of the straw from the previous crop (maize). In the control (CK), the full quantity of mulch was ploughed into the top 20 cm of soil. The results showed that the existence of straw on the soil surface reduced the maximum, but increased the minimum diurnal soil temperature. When soil temperature was decreasing (from November to early February the next year), soil temperature (0–10 cm) under straw mulching was on average 0.3°C higher for LM and 0.58°C higher for MM than that without mulching (CK). During the period when soil temperature increased (from February to early April, the recovery and jointing stages of winter wheat), average daily soil temperature of 0–10 cm was 0.42°C lower for LM and 0.65°C lower for MM than that of CK. With the increase in leaf area index, the effect of mulching on soil temperature gradually disappeared. The lower soil temperature under mulch in spring delayed the development of winter wheat up to 7 days, which on average reduced the final grain yield by 5% for LM and 7% for MM compared with CK over the five seasons. Mulch reduced soil evaporation by 21% under LM and 40% under MM compared with CK, based on daily measuring of microlysimeters. However, because yield was reduced, the overall WUE was not improved by mulch.  相似文献   

16.
为探究不同秸秆还田模式对土壤碳库的影响,以陕西关中平原连续11年麦玉秸秆还田定位试验为基础,选择5种还田模式,即秸秆均不还田(CK)、小麦高留茬-玉米秸秆粉碎还田(WH-MC)、小麦玉米秸秆均粉碎还田(WC-MC)、小麦高留茬-玉米秸秆不还田(WH-MN)和小麦秸秆粉碎还田-玉米秸秆不还田(WC-MN),测定不同模式土壤有机碳(SOC)、活性碳组分和无机碳(SIC)在0~40 cm土层的分布。结果表明: 与CK相比,WH-MC和WC-MC的SOC储量分别增加28.1%和22.2%,SIC储量分别增加20.4%和17.3%;与试验初始土壤碳储量相比,各还田模式SOC固持量变化为-0.84~6.55 t·hm-2,SIC固持量为-0.26~8.61 t·hm-2;土壤总固碳效率为7.5%,维持土壤初始碳储量水平的最小碳投入量为4.65 t·hm-2·a-1;与CK相比,WH-MC和WC-MC显著提升0~20 cm土层活性碳组分含量。主成分分析表明,不同还田模式下土壤碳库变化主要受秸秆投入量的影响。来源于灌溉水和植物残体的Ca2+、Mg2+与SOC矿化产生的CO2可共沉淀形成CaCO3,可能是本研究SIC增加的主要机制。从提高土壤碳固持角度来看,小麦高留茬-玉米秸秆粉碎还田模式为最佳还田模式。  相似文献   

17.
不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响   总被引:5,自引:0,他引:5  
以两个长期定位试验不同施肥处理玉米秸秆为对象,采用室内培养试验研究了其碳、氮养分在土壤中的矿化特性.结果表明:与未施肥处理相比,施用化肥(NPK)或化肥与有机肥配施(MNPK)处理明显增加了玉米秸秆的氮素含量,降低了其C/N.不同处理秸秆碳、氮矿化量和被微生物固持的碳、氮量因培养时期不同而异,NPK、MNPK和240 kg N·hm-2处理秸秆在培养期间碳的矿化率显著高于相应不施肥处理;60 d培养期结束后,NPK处理秸秆的有机碳矿化量最大,占加入总有机碳的13.24%.各施肥处理玉米秸秆施入土壤后引起的土壤矿质氮固持量均较不施肥秸秆低,其中MNPK处理最低.施用秸秆增加了土壤微生物的代谢熵(qCO2),但不同处理间qCO2的差异较小;各处理土壤微生物生物量碳、氮含量因培养时期不同而异.因此,生产中利用秸秆时应考虑不同施肥处理秸秆养分含量的差异.  相似文献   

18.
不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响   总被引:17,自引:0,他引:17  
以两个长期定位试验不同施肥处理玉米秸秆为对象,采用室内培养试验研究了其碳、氮养分在土壤中的矿化特性.结果表明:与未施肥处理相比,施用化肥(NPK)或化肥与有机肥配施(MNPK)处理明显增加了玉米秸秆的氮素含量,降低了其C/N.不同处理秸秆碳、氮矿化量和被微生物固持的碳、氮量因培养时期不同而异,NPK、MNPK和240 kg N·hm-2处理秸秆在培养期间碳的矿化率显著高于相应不施肥处理;60 d培养期结束后,NPK处理秸秆的有机碳矿化量最大,占加入总有机碳的13.24%.各施肥处理玉米秸秆施入土壤后引起的土壤矿质氮固持量均较不施肥秸秆低,其中MNPK处理最低.施用秸秆增加了土壤微生物的代谢熵(qCO2),但不同处理间qCO2的差异较小;各处理土壤微生物生物量碳、氮含量因培养时期不同而异.因此,生产中利用秸秆时应考虑不同施肥处理秸秆养分含量的差异.  相似文献   

19.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

20.
秸秆直接还田易造成土秸混合度差、秸秆腐解慢和幼苗群体质量差等问题,不利于作物稳产和增产.秸秆颗粒具有还田性能好、还田质量高的优点,但还田后对作物生长和土壤碳排放特征的影响仍不清楚.通过田间微区试验,以秸秆不还田和常规粉碎还田为对照,分析了秸秆颗粒还田对冬小麦和夏玉米籽粒产量、还田一年内土壤呼吸速率和土壤碳排放效率的影响,为改进秸秆还田方式提供理论依据.结果表明: 秸秆颗粒还田显著提高了冬小麦和夏玉米籽粒产量,其周年作物产量较秸秆不还田和常规粉碎还田分别显著提高14.0%和5.8%.秸秆颗粒还田促进土壤碳排放,其小麦生长季和玉米生长季土壤呼吸速率和碳累积排放量显著高于秸秆不还田.与常规粉碎还田相比,秸秆颗粒还田显著提高了冬小麦生长季土壤呼吸速率和碳累积排放量15.2%和8.9%,但夏玉米生长季两者无显著差异.此外,秸秆颗粒还田降低了土壤呼吸温度敏感指数(Q10),提高了土壤碳排放效率.与秸秆不还田和常规粉碎还田相比,秸秆颗粒还田土壤呼吸敏感指数显著降低22.6%和10.1%,周年土壤碳排放效率提高2.3%和1.9%.可见,秸秆颗粒还田短期内显著促进土壤碳排放,但由于较高的作物产量,其碳排放效率能维持在较高水平.在黄淮海粮食主产区,秸秆颗粒还田可以作为一种新型的秸秆还田方式,但其土壤碳排放的长期效应仍需进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号