首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acute activation of calcium/calmodulin-dependent protein kinase (CaMKII) in permeabilized phospholamban knockout (PLN-KO) mouse myocytes phosphorylates ryanodine receptors (RyRs) and activates spontaneous local sarcoplasmic reticulum (SR) Ca release events (Ca sparks) even at constant SR Ca load. To assess how CaMKII regulates SR Ca release in intact myocytes (independent of SR Ca content changes or PLN effects), we compared Ca sparks in PLN-KO versus mice, which also have transgenic cardiac overexpression of CaMKIIδC in the PLN-KO background (KO/TG). Compared with PLN-KO mice, these KO/TG cardiomyocytes exhibited 1), increased twitch Ca transient and fractional release (both by ~35%), but unaltered SR Ca load; 2), increased resting Ca spark frequency (300%) despite a lower diastolic [Ca]i, which also slowed twitch [Ca]i decline (suggesting CaMKII-dependent RyR Ca sensitization); 3), elevated Ca spark amplitude and rate of Ca release (which might indicate that more RyR channels participate in a single spark); 4), prolonged Ca spark rise time (which implies that CaMKII either delays RyR closure or prolongs the time when openings can occur); 5), more frequent repetitive sparks at single release sites. Analysis of repetitive sparks from individual Ca release sites indicates that CaMKII enhanced RyR Ca sensitivity, but did not change the time course of SR Ca refilling. These results demonstrate that there are dramatic CaMKII-mediated effects on RyR Ca release that occur via regulation of both RyR activation and termination processes.  相似文献   

2.
A Ca(2+) spark arises when a cluster of sarcoplasmic reticulum (SR) channels (ryanodine receptors or RyRs) opens to release calcium in a locally regenerative manner. Normally triggered by Ca(2+) influx across the sarcolemmal or transverse tubule membrane neighboring the cluster, the Ca(2+) spark has been shown to be the elementary Ca(2+) signaling event of excitation-contraction coupling in heart muscle. However, the question of how the Ca(2+) spark terminates remains a central, unresolved issue. Here we present a new model, "sticky cluster," of SR Ca(2+) release that simulates Ca(2+) spark behavior and enables robust Ca(2+) spark termination. Two newly documented features of RyR behavior have been incorporated in this otherwise simple model: "coupled gating" and an opening rate that depends on SR lumenal [Ca(2+)]. Using a Monte Carlo method, local Ca(2+)-induced Ca(2+) release from clusters containing between 10 and 100 RyRs is modeled. After release is triggered, Ca(2+) flux from RyRs diffuses into the cytosol and binds to intracellular buffers and the fluorescent Ca(2+) indicator fluo-3 to produce the model Ca(2+) spark. Ca(2+) sparks generated by the sticky cluster model resemble those observed experimentally, and Ca(2+) spark duration and amplitude are largely insensitive to the number of RyRs in a cluster. As expected from heart cell investigation, the spontaneous Ca(2+) spark rate in the model increases with elevated cytosolic or SR lumenal [Ca(2+)]. Furthermore, reduction of RyR coupling leads to prolonged model Ca(2+) sparks just as treatment with FK506 lengthens Ca(2+) sparks in heart cells. This new model of Ca(2+) spark behavior provides a "proof of principle" test of a new hypothesis for Ca(2+) spark termination and reproduces critical features of Ca(2+) sparks observed experimentally.  相似文献   

3.
We have investigated the effects of imperatoxin A (IpTx(a)) on local calcium release events in permeabilized frog skeletal muscle fibers, using laser scanning confocal microscopy in linescan mode. IpTx(a) induced the appearance of Ca(2+) release events from the sarcoplasmic reticulum that are approximately 2 s and have a smaller amplitude (31 +/- 2%) than the "Ca(2+) sparks" normally seen in the absence of toxin. The frequency of occurrence of long-duration imperatoxin-induced Ca(2+) release events increased in proportion to IpTx(a) concentrations ranging from 10 nM to 50 nM. The mean duration of imperatoxin-induced events in muscle fibers was independent of toxin concentration and agreed closely with the channel open time in experiments on isolated frog ryanodine receptors (RyRs) reconstituted in planar lipid bilayer, where IpTx(a) induced opening of single Ca(2+) release channels to prolonged subconductance states. These results suggest involvement of a single molecule of IpTx(a) in the activation of a single Ca(2+) release channel to produce a long-duration event. Assuming the ratio of full conductance to subconductance to be the same in the fibers as in bilayer, the amplitude of a spark relative to the long event indicates involvement of at most four RyR Ca(2+) release channels in the production of short-duration Ca(2+) sparks.  相似文献   

4.
Calcium (Ca) sparks are the fundamental sarcoplasmic reticulum (SR) Ca release events in cardiac myocytes, and they have a typical duration of 20–40 ms. However, when a fraction of ryanodine receptors (RyRs) are blocked by tetracaine or ruthenium red, Ca sparks lasting hundreds of milliseconds have been observed experimentally. The fundamental mechanism underlying these extremely prolonged Ca sparks is not understood. In this study, we use a physiologically detailed mathematical model of subcellular Ca cycling to examine how Ca spark duration is influenced by the number of functional RyRs in a junctional cluster (which is reduced by tetracaine or ruthenium red) and other SR Ca handling properties. One RyR cluster contains a few to several hundred RyRs, and we use a four-state Markov RyR gating model. Each RyR opens stochastically and is regulated by cytosolic and luminal Ca. We varied the number of functional RyRs in the single cluster, diffusion within the SR network, diffusion between network and junctional SR, cytosolic Ca diffusion, SERCA uptake activity, and RyR open probability. For long-lasting Ca release events, opening events within the cluster must occur continuously because the typical open time of the RyR is only a few milliseconds. We found the following: 1) if the number of RyRs is too small, it is difficult to maintain consecutive openings and stochastic attrition terminates the release; 2) if the number of RyRs is too large, the depletion of Ca from the junctional SR terminates the release; and 3) very long release events require relatively small-sized RyR clusters (reducing flux as seen experimentally with tetracaine) and sufficiently rapid intra-SR Ca diffusion, such that local junctional intra-SR [Ca] can be maintained by intra-SR diffusion and overall SR Ca reuptake.  相似文献   

5.
The properties of Ca(2+) sparks in frog intact skeletal muscle fibers depolarized with 13 mM [K(+)] Ringer's are well described by a computational model with a Ca(2+) source flux of amplitude 2.5 pA (units of current) and duration 4.6 ms (18 degrees C; Model 2 of Baylor et al., 2002). This result, in combination with the values of single-channel Ca(2+) current reported for ryanodine receptors (RyRs) in bilayers under physiological ion conditions, 0.5 pA (Kettlun et al., 2003) to 2 pA (Tinker et al., 1993), suggests that 1-5 RyR Ca(2+) release channels open during a voltage-activated Ca(2+) spark in an intact fiber. To distinguish between one and greater than one channel per spark, sparks were measured in 8 mM [K(+)] Ringer's in the absence and presence of tetracaine, an inhibitor of RyR channel openings in bilayers. The most prominent effect of 75-100 microM tetracaine was an approximately sixfold reduction in spark frequency. The remaining sparks showed significant reductions in the mean values of peak amplitude, decay time constant, full duration at half maximum (FDHM), full width at half maximum (FWHM), and mass, but not in the mean value of rise time. Spark properties in tetracaine were simulated with an updated spark model that differed in minor ways from our previous model. The simulations show that (a) the properties of sparks in tetracaine are those expected if tetracaine reduces the number of active RyR Ca(2+) channels per spark, and (b) the single-channel Ca(2+) current of an RyR channel is 相似文献   

6.
Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle.  相似文献   

7.
For a single or a group of Markov channels gating reversibly, distributions of open and closed times should be the sum of positively weighted decaying exponentials. Violation of this microscopic reversibility has been demonstrated previously on a number of occasions at the single channel level, and has been attributed to possible channel coupling to external sources of free energy. Here we show that distribution of durations of Ca(2+) release underlying Ca(2+) sparks in intact cardiac myocytes exhibits a prominent mode at approximately 8 ms. Analysis of the cycle time for repetitive sparks at hyperactive sites revealed no intervals briefer than approximately 35 ms and a mode at approximately 90 ms. These results indicate that, regardless of whether Ca(2+) sparks are single-channel or multi-channel in origin, they are generated by thermodynamically irreversible stochastic processes. In contrast, data from planar lipid bilayer experiments were consistent with reversible gating of RyR under asymmetric cis (4 microM) and trans Ca(2+) (10 mM), suggesting that the irreversibility for Ca(2+) spark genesis may reside at a supramolecular level. Modeling suggests that Ca(2+)-induced Ca(2+) release among adjacent RyRs may couple the external energy derived from Ca(2+) gradients across the SR to RyR gating in situ, and drive the irreversible generation of Ca(2+) sparks.  相似文献   

8.
Tricyclic antidepressants such as amitriptyline (AMT) have been reported to have adverse side effects on cardiac performance. AMT effects on Ca handling in ventricular myocytes, however, are not well understood. Therefore, we investigated AMT action on sarcoplasmic reticulum (SR) Ca release in ventricular myocytes, ryanodine receptor (RyR) activity, and Ca uptake by SR microsomes. In permeabilized myocytes, AMT transiently increased free luminal Ca concentration ([Ca]) followed by marked depletion. AMT (10 microM) caused a rapid and a transient increase of Ca spark frequency, followed by a significant suppression of spark activity. The latter was associated with a decrease of Ca spark amplitude and SR Ca load to 87 and 60%, respectively. AMT (10 microM) completely abolished propagation of spontaneous Ca waves. Higher concentrations of AMT (0.1-1 mM) evoked SR Ca release reminiscent of the effect of caffeine (20 mM) and caused almost complete depletion of SR Ca content. Studies on single calsequestrin-free RyR channels revealed that AMT increased the mean open time and open probability (Po) in a dose-dependent fashion (dissociation constant = 4.2 microM). High concentrations of AMT (> 25 microM) evoked frequent long openings with Po reaching very high levels (> 0.70). In studies with cardiac SR microsomes, AMT slowed the rate of ATP-dependent Ca uptake. We conclude that AMT affects SR Ca handling in ventricular myocytes by multiple mechanisms, including direct stimulation of RyRs and inhibition of SR Ca uptake. These effects could contribute to AMT cardiotoxicity.  相似文献   

9.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

10.
Ryanodine receptors (RyRs) mediate calcium (Ca)-induced Ca release and intracellular Ca homeostasis. In a cardiac myocyte, RyRs group into clusters of variable size from a few to several hundred RyRs, creating a spatially nonuniform intracellular distribution. It is unclear how heterogeneity of RyR cluster size alters spontaneous sarcoplasmic reticulum (SR) Ca releases (Ca sparks) and arrhythmogenic Ca waves. Here, we tested the impact of heterogeneous RyR cluster size on the initiation of Ca waves. Experimentally, we measured RyR cluster sizes at Ca spark sites in rat ventricular myocytes and further tested functional impacts using a physiologically detailed computational model with spatial and stochastic intracellular Ca dynamics. We found that the spark frequency and amplitude increase nonlinearly with the size of RyR clusters. Larger RyR clusters have lower SR Ca release threshold for local Ca spark initiation and exhibit steeper SR Ca release versus SR Ca load relationship. However, larger RyR clusters tend to lower SR Ca load because of the higher Ca leak rate. Conversely, smaller clusters have a higher threshold and a lower leak, which tends to increase SR Ca load. At the myocyte level, homogeneously large or small RyR clusters limit Ca waves (because of low load for large clusters but low excitability for small clusters). Mixtures of large and small RyR clusters potentiates Ca waves because the enhanced SR Ca load driven by smaller clusters enables Ca wave initiation and propagation from larger RyR clusters. Our study suggests that a spatially heterogeneous distribution of RyR cluster size under pathological conditions may potentiate Ca waves and thus afterdepolarizations and triggered arrhythmias.  相似文献   

11.
The effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop, on Ca(2+) release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr(671)-Leu(690); 36 microM) enhanced the rate of Ca(2+) release from normal SR (SR(N)) and from SR of MH-susceptible muscle (SR(MH)) by 10 +/- 3.2 nmole/mg/min and 76 +/- 9.7 nmole/mg/min, respectively. Ca (2+) release from SR(N) or SR(MH) was not increased by control peptide NB (Gly(689)-Lys(708)). AS (scrambled A sequence; 36 microM) did not alter Ca (2+) release from SR(N), but increased release from SR(MH) by 29 +/- 4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyR(MH)) were up to about fourfold more strongly activated by peptide A (> or =1 nM) than normal RyR channels (RyR(N)) at -40 mV. Neither NB or AS activated RyR(N). RyR(MH) showed an approximately 1.8-fold increase in mean current with 30 microM AS. Inhibition at +40 mV was stronger in RyR(MH) and seen with peptide A (> or = 0.6 microM) and AS (> or = 0.6 microM), but not NB. These results show that the Arg(615)Cys substitution in RyR(MH) has multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca(2+) release from SR in MH-susceptible muscle.  相似文献   

12.
The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.  相似文献   

13.
Local discrete elevations in myoplasmic Ca2+ (Ca2+ sparks) arise from the opening of a small group of RyRs. Summation of a large number of Ca2+ sparks gives rise to the whole cell Ca2+ transient necessary for muscle contraction, Unlike sarcoplasmic reticulum vesicle preparations and isolated single channels in artificial membranes, the study of Ca2+ sparks provides a means to understand the regulation of a small group of RyRs in the environment of a functionally intact triad and in the presence of endogenous regulatory proteins. To gain insight into the mechanisms that regulate the gating of RyRs we have utilized laser scanning confocal microscopy to measure Ca2+ sparks in permeabilized frog skeletal muscle fibers. This review summarizes our recent studies using both exogenous (ImperatoxinA and domain peptides) and endogenous (calmodulin) modulators of RyR to gain insight into the number of RyR Ca2+ release channels underlying a Ca2+ spark, how domain-domain interactions within RyR regulate the functional state of the channel as well as gating mechanisms of RyR in living muscle fibers.  相似文献   

14.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   

15.
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ~75% and single RyR2 opening frequency ~150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.  相似文献   

16.
Xie H  Zhu PH 《Biophysical journal》2006,91(8):2882-2891
To understand better the modulation of ryanodine receptors (RyRs) during oxidative stress, the effect of 4,4'-dithiodipyridine (DTDP), a cell-permeant and thiol-reactive oxidant, on global Ca(2+) signal and spontaneous Ca(2+) sparks of rat ventricular myocytes was investigated. It was shown that a brief Ca(2+) transient was elicited by DTDP, when its concentration was raised to 100 microM DTDP. In addition a dose-dependent increase of cytoplasmic free Zn(2+) concentration was induced by DTDP. An increase of the frequency of spontaneous Ca(2+) sparks appeared at 3 microM DTDP, whereas higher concentration of DTDP caused a biphasic change of the frequency in both intact and permeabilized myocytes. Consistent with the biphasic effect, caffeine-induced Ca(2+) transients were similarly affected. Because DTDP did not reduce the free Ca(2+) concentration in the sarcoplasmic reticulum lumen, it is likely that the effects of DTDP on the frequency and caffeine-induced Ca(2+) transients are due mainly to sulfhydryl oxidation-induced activation and subsequent inactivation of RyRs. Unlike the frequency, the spatio-temporal properties of Ca(2+) sparks were not influenced by DTDP. The finding that DTDP does not affect the duration of Ca(2+) sparks is inconsistent with that the DTDP-induced increase of the open time of reconstituted RyR channels. The mechanism underlying this discrepancy, especially the possible role of the interaction between arrayed RyRs in myocytes, is discussed. This study suggests that, even if oxidative stress is mild enough not to cause intracellular Ca(2+) accumulation, it may affect signaling pathways through directly modulating the RyR or its complex and in turn changing the frequency of spontaneous Ca(2+) sparks. Thus, the functional importance of moderate oxidative stress should not be overlooked.  相似文献   

17.
The kinetic behavior of Ca(2+) sparks in knockout mice lacking a specific ryanodine receptor (RyR) isoform should provide molecular information on function and assembly of clusters of RyRs. We examined resting Ca(2+) sparks in RyR type 3-null intercostal myotubes from embryonic day 18 (E18) mice and compared them to Ca(2+) sparks in wild-type (wt) mice of the same age and to Ca(2+) sparks in fast-twitch muscle cells from the foot of wt adult mice. Sparks from RyR type 3-null embryonic cells (368 events) were significantly smaller, briefer, and had a faster time to peak than sparks from wt cells (280 events) of the same age. Sparks in adult cells (220 events) were infrequent, yet they were highly reproducible with population means smaller than those in embryonic RyR type 3-null cells but similar to those reported in adult amphibian skeletal muscle fibers. Three-dimensional representations of the spark peak intensity (DeltaF/Fo) vs. full width at half-maximal intensity (FWHM) vs. full duration at half-maximal intensity (FTHM) showed that wt embryonic sparks were considerably more variable in size and kinetics than sparks in adult muscle. In all cases, tetracaine (0.2 mM) abolished Ca(2+) spark activity, whereas caffeine (0.1 mM) lengthened the spark duration in wt embryonic and adult cells but not in RyR type 3-null cells. These results confirmed that sparks arose from RyRs. The low caffeine sensitivity of RyR type 3-null cells is entirely consistent with observations by other investigators. There are three conclusions from this study: i) RyR type-1 engages in Ca(2+) spark activity in the absence of other RyR isoforms in RyR type 3-null myotubes; ii) Ca(2+) sparks with parameters similar to those reported in adult amphibian skeletal muscle can be detected, albeit at a low frequency, in adult mammalian skeletal muscle cells; and iii) a major contributor to the unusually large Ca(2+) sparks observed in normal (wt) embryonic muscle is RyR type 3. To explain the reduction in the size of sparks in adult compared to embryonic skeletal muscle, we suggest that in embryonic muscle, RyR type 1 and RyR type 3 channels co-contribute to Ca(2+) release during the same spark and that Ca(2+) sparks undergo a maturation process which involves a decrease in RyR type 3.  相似文献   

18.
In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle.  相似文献   

19.
The local control concept of excitation-contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to track the brief (<0.5 ms) Ca(2+) elevations accompanying single DHPR channel openings. To define the kinetic limits of effective trigger Ca(2+) signals, we recorded activity of single cardiac RyRs in lipid bilayers during rapid and transient increases in Ca(2+) generated by flash photolysis of DM-nitrophen. Application of such Ca(2+) spikes (amplitude approximately 10-30 microM, duration approximately 0.1-0.4 ms) resulted in activation of the RyRs with a probability that increased steeply (apparent Hill slope approximately 2.5) with spike amplitude. The time constants of RyR activation were 0.07-0.27 ms, decreasing with spike amplitude. To fit the rising portion of the open probability, a single exponential function had to be raised to a power n approximately 3. We show that these data could be adequately described with a gating scheme incorporating four sequential Ca(2+)-sensitive closed states between the resting and the first open states. These results provide evidence that brief Ca(2+) triggers are adequate to activate the RyR, and support the possibility that RyR channels are governed by single DHPR openings. They also provide evidence for the assumption that RyR activation requires binding of multiple Ca(2+) ions in accordance with the tetrameric organization of the channel protein.  相似文献   

20.
cADP ribose (cADPR) serves as second messenger to activate the ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) and mobilize intracellular Ca(2+) in vascular smooth muscle cells. However, the mechanisms mediating the effect of cADPR remain unknown. The present study was designed to determine whether FK-506 binding protein 12.6 (FKBP12.6), an accessory protein of the RyRs, plays a role in cADPR-induced activation of the RyRs. A 12.6-kDa protein was detected in bovine coronary arterial smooth muscle (BCASM) and cultured CASM cells by being immunoblotted with an antibody against FKBP12, which also reacted with FKBP12.6. With the use of planar lipid bilayer clamping techniques, FK-506 (0.01-10 microM) significantly increased the open probability (NP(O)) of reconstituted RyR/Ca(2+) release channels from the SR of CASM. This FK-506-induced activation of RyR/Ca(2+) release channels was abolished by pretreatment with anti-FKBP12 antibody. The RyRs activator cADPR (0.1-10 microM) markedly increased the activity of RyR/Ca(2+) release channels. In the presence of FK-506, cADPR did not further increase the NP(O) of RyR/Ca(2+) release channels. Addition of anti-FKBP12 antibody also completely blocked cADPR-induced activation of these channels, and removal of FKBP12.6 by preincubation with FK-506 and subsequent gradient centrifugation abolished cADPR-induced increase in the NP(O) of RyR/Ca(2+) release channels. We conclude that FKBP12.6 plays a critical role in mediating cADPR-induced activation of RyR/Ca(2+) release channels from the SR of BCASM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号