首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the enrichment and distribution of the histone variant mH2A1 in the condensed inactive X (Xi) chromosome. By using highly specific antibodies against mH2A1 and stable HEK 293 cell lines expressing either green fluorescent protein (GFP)-mH2A1 or GFP-H2A, we found that the Xi chromosome contains ~1.5-fold more mH2A1 than the autosomes. To determine the in vivo distribution of mH2A1 along the X chromosome, we used a native chromatin immunoprecipitation-on-chip technique. DNA isolated from mH2A1-immunoprecipitated nucleosomes from either male or female mouse liver were hybridized to tiling microarrays covering 5 kb around most promoters or the entire X chromosome. The data show that mH2A1 is uniformly distributed across the entire Xi chromosome. Interestingly, a stronger mH2A1 enrichment along the pseudoautosomal X chromosome region was observed in both sexes. Our results indicate a potential role for macroH2A in large-scale chromosome structure and genome stability.  相似文献   

2.
3.
A counting process senses the X chromosome/autosome ratio and ensures that X chromosome inactivation (XCI) initiates in the female (XX) but not in the male (XY) mouse embryo. Counting is regulated by the X-inactivation centre, which contains the Xist gene. Deleting 65 kb 3' to Xist in XO embryonic stem (ES) cells affects counting and results in inappropriate XCI upon differentiation. We show here that normal counting can be rescued in these deleted ES cells using cre/loxP re-insertion, and refine the location of elements controlling counting within a 20 kb bipartite domain. Furthermore, we show that the 65 kb deletion also leads to inappropriate XCI in XY differentiated ES cells, which excludes the involvement of sex-specific mechanisms in the initiation of XCI. At the chromatin level, we have found that the Xist gene corresponds to a peak of H3 Lys-4 dimethylation, which is dramatically and specifically affected by the deletion 3' to Xist. Our results raise the possibility that H3 Lys-4 dimethylation within Xist may be functionally implicated in the counting process.  相似文献   

4.
Chromatin on the inactive X chromosome (Xi) of female mammals is enriched for the histone variant macroH2A that can be detected at interphase as a distinct nuclear structure referred to as a macro chromatin body (MCB). Green fluorescent protein-tagged and Myc epitope-tagged macroH2A readily form an MCB in the nuclei of transfected female, but not male, cells. Using targeted disruptions, we have identified two macrochromatin domains within macroH2A that are independently capable of MCB formation and association with the Xi. Complete removal of the non-histone C-terminal tail does not reduce the efficiency of association of the variant histone domain of macroH2A with the Xi, indicating that the histone portion alone can target the Xi. The non-histone domain by itself is incapable of MCB formation. However, when directed to the nucleosome by fusion to core histone H2A or H2B, the non-histone tail forms an MCB that appears identical to that of the endogenous protein. Mutagenesis of the non-histone portion of macroH2A localized the region required for MCB formation and targeting to the Xi to an ~190 amino acid region.  相似文献   

5.
Histone variants replace the core histones in a substantial fraction of nucleosomes, affecting chromatin structure and impacting chromatin-templated processes. In many instances incorporation of histone variants results in formation of specialized regions of chromatin. Proper localization of histone variants to distinct regions of the genome is critical for their function, yet how this specific localization is achieved remains unclear. macroH2A1 is enriched on the inactive X chromosome in female mammalian cells, where it functions to maintain gene silencing. macroH2A1 consists of a histone H2A-like histone domain and a large, globular C-terminal macro domain that is not present in other histone proteins. The histone domain of macroH2A1 is alone sufficient to direct enrichment on the inactive X chromosome when expressed in female cells, indicating that sequences important for correct localization lie in this domain. Here we investigate whether divergent sequences of the H2A variant macroH2A1 contribute to its correct localization. We mapped the regions of the macroH2A1 histone domain that are sufficient for localization to the inactive X chromosome using chimeras between H2A and the histone domain of macroH2A1. Multiple short sequences dispersed along the macroH2A1 histone domain individually supported enrichment on the inactive X chromosome when introduced into H2A. These sequences map to the surface of the macroH2A1/H2B dimer, but are buried in the crystal structure of the macroH2A1 containing nucleosome, suggesting that they may contribute to recognition by macroH2A1/H2B deposition factors.  相似文献   

6.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

7.
8.
MacroH2A (mH2A) is one of the most recently identified members of the heteromorphous histone variant family. It is unique among the members of this group because it contains an unusually large non-histone C-terminal end, from where its name derives, and appears to be restricted to subphylum vertebrata. Although a concerted effort has been carried out in order to characterize the physiological relevance of mH2A, little is known in comparison about the structural importance of the molecule. Elucidating the biophysical and conformational proprieties of mH2A in chromatin may provide clues into the links between this histone variant and its unique function(s). In this paper, we look first at the heterogeneous tissue-specific distribution of this protein in different vertebrate classes. This is followed by a structural comparison between mH2A and H2A protein and by the characterization of the nucleosome core particles with which these histone subtypes are associated. We find that the highly alpha-helical C-terminus of mH2A confers an asymmetric conformation to nucleosomes and that this variant is tightly bound to chromatin fragments in a way that does not depend on the overall extent of acetylation of the other core histones.  相似文献   

9.
10.
MacroH2A (mH2A) is a histone variant that is enriched in the inactivated X-chromosomes of mammalian females. To characterize the role of this protein in other nuclear processes we isolated chromatin particles from chicken liver, a vertebrate system that does not undergo X-inactivation. Chromatin digestion and fractionation studies determined that mH2A is evenly distributed at several levels of chromatin structure and stabilizes the nucleosome core particle in solution. However, at the level of the chromatosome, selective salt precipitation showed the existence of a mutually exclusive relationship between mH2A and H1, which may reveal functional redundancy between these proteins. Two-dimensional gel electrophoresis demonstrated the presence of one major population of mH2A containing nucleosomes, which may become ADP-ribosylated. This report provides new clues into how mH2A distribution and a previously unidentified post-translational modification may help regulate the repression of autosomal chromatin.  相似文献   

11.
12.
13.
Generation of induced pluripotent stem cells (iPSCs) with naive pluripotency is important for their applications in regenerative medicine. In female iPSCs, acquisition of naive pluripotency is coupled to X chromosome reactivation (XCR) during somatic cell reprogramming, and live cell monitoring of XCR is potentially useful for analyzing how iPSCs acquire naive pluripotency. Here we generated female mouse embryonic stem cells (ESCs) that carry the enhanced green fluorescent protein (EGFP) and humanized Kusabira-Orange (hKO) genes inserted into an intergenic site near either the Syap1 or Taf1 gene on both X chromosomes. The ESC clones, which initially expressed both EGFP and hKO, inactivated one of the fluorescent protein genes upon differentiation, indicating that the EGFP and hKO genes are subject to X chromosome inactivation (XCI). When the derived somatic cells carrying the EGFP gene on the inactive X chromosome (Xi) were reprogrammed into iPSCs, the EGFP gene on the Xi was reactivated when pluripotency marker genes were induced. Thus, the fluorescent protein genes inserted into an intergenic locus on both X chromosomes enable live cell monitoring of XCI during ESC differentiation and XCR during reprogramming. This is the first study that succeeded live cell imaging of XCR during reprogramming.  相似文献   

14.
15.
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.  相似文献   

16.
17.
In female mouse embryos, somatic cells undergo a random form of X chromosome inactivation (XCI), whereas extraembryonic trophoblast cells in the placenta undergo imprinted XCI, silencing exclusively the paternal X chromosome. Initiation of imprinted XCI requires a functional maternal allele of the X-linked gene Rnf12, which encodes the ubiquitin ligase Rnf12/RLIM. We find that knockout (KO) of Rnf12 in female mammary glands inhibits alveolar differentiation and milk production upon pregnancy, with alveolar cells that lack RLIM undergoing apoptosis as they begin to differentiate. Genetic analyses demonstrate that these functions are mediated primarily by the paternal Rnf12 allele due to nonrandom maternal XCI in mammary epithelial cells. These results identify paternal Rnf12/RLIM as a critical survival factor for milk-producing alveolar cells and, together with population models, reveal implications of transgenerational epigenetic inheritance.  相似文献   

18.
19.
20.

Background

In female mammalian cells, random X chromosome inactivation (XCI) equalizes the dosage of X-encoded gene products to that in male cells. XCI is a stochastic process, in which each X chromosome has a probability to be inactivated. To obtain more insight in the factors setting up this probability, we studied the role of the X to autosome (X∶A) ratio in initiation of XCI, and have used the experimental data in a computer simulation model to study the cellular population dynamics of XCI.

Methodology/Principal Findings

To obtain more insight in the role of the X∶A ratio in initiation of XCI, we generated triploid mouse ES cells by fusion of haploid round spermatids with diploid female and male ES cells. These fusion experiments resulted in only XXY triploid ES cells. XYY and XXX ES lines were absent, suggesting cell death related either to insufficient X-chromosomal gene dosage (XYY) or to inheritance of an epigenetically modified X chromosome (XXX). Analysis of active (Xa) and inactive (Xi) X chromosomes in the obtained triploid XXY lines indicated that the initiation frequency of XCI is low, resulting in a mixed population of XaXiY and XaXaY cells, in which the XaXiY cells have a small proliferative advantage. This result, and findings on XCI in diploid and tetraploid ES cell lines with different X∶A ratios, provides evidence that the X∶A ratio determines the probability for a given X chromosome to be inactivated. Furthermore, we found that the kinetics of the XCI process can be simulated using a probability for an X chromosome to be inactivated that is proportional to the X∶A ratio. These simulation studies re-emphasize our hypothesis that the probability is a function of the concentration of an X-encoded activator of XCI, and of X chromosome specific allelic properties determining the threshold for this activator.

Conclusions

The present findings reveal that the probability for an X chromosome to be inactivated is proportional to the X∶A ratio. This finding supports the presence of an X-encoded activator of the XCI process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号