首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.  相似文献   

2.
3.
4.
Origin and evolution of X chromosome inactivation   总被引:1,自引:0,他引:1  
Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.  相似文献   

5.
In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown. DNA methylation is one candidate, and therefore we examined whether disruptions of the two de novo DNA methyltransferases in growing oocytes affect imprinted XCI. We found that accumulation of histone H3 lysine-27 trimethylation, a hallmark of XCI, occurs normally on the Xp, and not on the Xm, in female blastocysts developed from the mutant oocytes. Furthermore, the allelic expression patterns of X-linked genes including Xist and Tsix were unchanged in preimplantation embryos and also in the trophoblast. These results show that a maternal disruption of the DNA methyltransferases has no effect on imprinted XCI and argue that de novo DNA methylation is dispensable for Xm imprinting. This underscores the difference between imprinted XCI and autosomal imprinting.  相似文献   

6.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

7.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

8.
In the mouse, there are two forms of X chromosome inactivation (XCI), random XCI in the fetus and imprinted paternal XCI, which is limited to the extraembryonic tissues. While the mechanism of random XCI has been studied extensively using the in vitro XX ES cell differentiation system, imprinted XCI during early embryonic development has been less well characterized. Recent studies of early embryos have reported unexpected findings for the paternal X chromosome (Xp). Imprinted XCI may not be linked to meiotic silencing in the male germ line but rather to the imprinted status of the Xist gene. Furthermore, the Xp becomes inactivated in all cells of cleavage-stage embryos and then reactivated in the cells of the inner cell mass (ICM) that form the epiblast, where random XCI ensues.  相似文献   

9.
10.
11.
Regulation of imprinted X-chromosome inactivation in mice by Tsix   总被引:11,自引:0,他引:11  
  相似文献   

12.
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

13.
14.
《Epigenetics》2013,8(2):204-211
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

15.
16.
17.
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre‐implantation bovine embryo development by characterizing the allele‐specific expression pattern of the X chromosome‐linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4‐, 8‐ to 16‐cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT‐PCR‐RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele‐specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4‐, 8‐ to 16‐cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele‐specific expression of an X‐linked gene that is subject to XCI in in vitro bovine embryos from the 4‐cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. Mol. Reprod. Dev. 77: 615–621, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
In XX female mammals a single X chromosome is inactivated early in embryonic development, a process that is required to equalise X-linked gene dosage relative to XY males. X inactivation is regulated by a cis-acting master switch, the Xist locus, the product of which is a large non-coding RNA that coats the chromosome from which it is transcribed, triggering recruitment of chromatin modifying factors that establish and maintain gene silencing chromosome wide. Chromosome coating and Xist RNA-mediated silencing remain poorly understood, both at the level of RNA sequence determinants and interacting factors. Here, we describe analysis of a novel targeted mutation, Xist(INV), designed to test the function of a conserved region located in exon 1 of Xist RNA during X inactivation in mouse. We show that Xist(INV) is a strong hypomorphic allele that is appropriately regulated but compromised in its ability to silence X-linked loci in cis. Inheritance of Xist(INV) on the paternal X chromosome results in embryonic lethality due to failure of imprinted X inactivation in extra-embryonic lineages. Female embryos inheriting Xist(INV) on the maternal X chromosome undergo extreme secondary non-random X inactivation, eliminating the majority of cells that express the Xist(INV) allele. Analysis of cells that express Xist(INV) RNA demonstrates reduced association of the mutant RNA to the X chromosome, suggesting that conserved sequences in the inverted region are important for Xist RNA localisation.  相似文献   

20.
X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号