首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Xylem vulnerability to cavitation differs between tree species according to their drought resistance, more xerophilous species being more resistant to xylem cavitation. Variability in xylem vulnerability to cavitation is also found within species, especially between in situ populations. The origin of this variability has not been clearly identified. Here we analyzed the response of xylem hydraulic traits of Populus tremula×Populus alba trees to three different soil water regimes. Stem xylem vulnerability was scored as the xylem water potential causing 12, 50 and 88% loss of conductivity (P12, P50 and P88). Vulnerability to cavitation was found to acclimate to growing conditions under different levels of soil water content, with P50 values of ?1.82, ?2.03 and ?2.45 MPa in well‐watered, moderately water‐stressed and severely water‐stressed poplars, respectively. The value of P12, the xylem tension at which cavitation begins, was correlated with the lowest value of midday leaf water potential (ψm) experienced by each plant, the difference between the two parameters being approximately 0.5 MPa, consistent with the absence of any difference in embolism level between the different water treatments. These results support the hypothesis that vulnerability to cavitation is a critical trait for resistance to drought. The decrease in vulnerability to cavitation under growing conditions of soil drought was correlated with decreased vessel diameter, increased vessel wall thickness and a stronger bordered pit field (t/b)2. The links between these parameters are discussed.  相似文献   

2.
The possible role of water expelled from cavitated xylem conduits in the rehydration of water-stressed leaves has been studied in one-year-old twigs of populus deltoides Bartr. Twigs were dehydrated in air. At desired values of leaf water potential (Ψl) (between near full turgor and -1.62 MPa), twigs were placed in black plastic bags for 1–2h. Leaf water content was measured every 3–5 min before bagging and every 10 min in the dark. Hydraulic conductivity and xylem cavitation were measured both in the open and in the dark. Cavitation was monitored as ultrasound acoustic emissions (AE). A critical Ψl value of -0.96 MPa was found, at which AE increased significantly while the leaf water deficit decreased by gain of water. Since the twigs were no longer attached to roots, it was concluded that water expelled from cavitated xylem conduits was transported to the leaves, thus contributing to their rehydration. Xylem cavitation is discussed in terms of a ‘leaf water deficit buffer mechanism’, under not very severe water stress conditions.  相似文献   

3.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

4.
The extent to which stomatal conductance (gs) was capable of responding to reduced hydraulic conductance (k)and preventing cavitation-inducing xylem pressures was evaluated in the small riparian tree, Betula occidentalis Hook. We decreased k by inducing xylem cavitation in shoots using an air-injection technique. From 1 to 18 d after shoot injection we measured midday transpiration rate (E), gs, and xylem pressure (Ψp-xylem) on individual leaves of the crown. We then harvested the shoot and made direct measurements of k from the trunk (2–3 cm diameter) to the distal tip of the petioles of the same leaves measured for E and gs. The k measurement was expressed per unit leaf area (kl, leaf-specific conductance). Leaves measured within 2 d of shoot injection showed reduced gs and E relative to non-injected controls, and both parameters were strongly correlated with kl At this time, there was no difference in leaf Ψp-xylem between injected shoots and controls, and leaf Ψp-xylem was not significantly different from the highest cavitation-inducing pressure (Ψp-cav) in the branch xylem (-1.43 ± 0.029 MPa, n=8). Leaves measured 7–18 d after shoots were injected exhibited a partial return of gs and E values to the control range. This was associated with a decrease in leaf Ψp-xylem below Ψp-cav and loss of foliage. The results suggest the stomata were incapable of long-term regulation of E below control values and that reversion to higher E caused dieback via cavitation.  相似文献   

5.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

6.
In contrast with other native Populus species in North America, Populus tremuloides (aspen) can successfully establish itself in drought‐prone areas, yet no comprehensive analysis has been performed on the ability of seedlings to withstand and recover from a severe drought resulting in complete leaf mortality. Here, we subjected 4‐month‐old aspen seedlings grown in two contrasting soil media to a progressive drought until total leaf mortality, followed by a rewatering cycle. Stomatal conductance (gs), photosynthesis and transpiration followed a sigmoid decline with declining fraction of extractable soil water values. Cessation of leaf expansion occurred close to the end of the linear‐decrease phase, when gs was reduced by 95%. Leaf mortality started after gs reached the lowest values, which corresponded to a stem–xylem pressure potential (Ψxp) of ?2.0 MPa and a percent loss of stem hydraulic conductivity (PLC) of 50%. In plants with 50% leaf mortality, PLC values remained around 50%. Complete leaf mortality occurred at an average stem PLC of 90%, but all seedlings were able to resprout after 6–10 days of being rewatered. Plants decapitated at soil level before rewatering developed root suckers, while those left with a 4‐cm stump or with their stems intact resprouted exclusively from axillary buds. Resprouting was accompanied by recovery of stem hydraulic conductivity, with PLC values around 30%. The percentage of resprouted buds was negatively correlated with the stem %PLC. Thus, the recovery of stem hydraulic conductivity appears as an important factor in the resprouting capacity of aspen seedlings following a severe drought.  相似文献   

7.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

8.
Resistance to water‐stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air‐seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from ?2.9 to ?11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation‐resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary‐seeding as the most likely mode of air‐seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers.  相似文献   

9.
We investigated the hydraulic consequences of a major decrease in root‐to‐leaf area ratio (AR:AL) caused by nutrient amendments to 15‐year‐old Pinus taeda L. stands on sandy soil. In theory, such a reduction in AR:AL should compromise the trees’ ability to extract water from drying sand. Under equally high soil moisture, canopy stomatal conductance (GS) of fertilized trees (F) was 50% that of irrigated/fertilized trees (IF), irrigated trees (I), and untreated control trees (C). As predicted from theory, F trees also decreased their stomatal sensitivity to vapour pressure deficit by 50%. The lower GS in F was associated with 50% reduction in leaf‐specific hydraulic conductance (KL) compared with other treatments. The lower KL in F was in turn a result of a higher leaf area per sapwood area and a lower specific conductivity (conducting efficiency) of the plant and its root xylem. The root xylem of F trees was also 50% more resistant to cavitation than the other treatments. A transport model predicted that the lower AR:AL in IF trees resulted in a considerably restricted ability to extract water during drought. However, this deficiency was not exposed because irrigation minimized drought. In contrast, the lower AR:AL in F trees caused only a limited restriction in water extraction during drought owing to the more cavitation resistant root xylem in this treatment. In both fertilized treatments, approximate safety margins from predicted hydraulic failure were minimal suggesting increased vulnerability to drought‐induced dieback compared with non‐fertilized trees. However, IF trees are likely to be so affected even under a mild drought if irrigation is withheld.  相似文献   

10.
Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within‐plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure‐volume relations and in situ pre‐dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50) was lost at ?2.1 to ?3.1 MPa in stems and at ?1.7 to ?2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 – stem P50) were very narrow at ?0.4 to ?1.4 MPa. Pressure‐volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.  相似文献   

11.
The impact of leaf vein cavitation and embolism on stomatal response and leaf hydraulic conductance was studied in potted plants of sunflower subjected to water limitation. Plant dehydration was achieved either by cutting well‐watered plants near their base and leaving them dehydrating in air or by depriving intact plants of irrigation. The vein cavitation threshold (ΨCAV) was estimated in terms of ultrasound acoustic emissions (UAE) from the leaf blade versus leaf water potential (ΨL). This was found to be the same (ΨCAV ≈ ?0.6 MPa) for leaves of both cut and intact plants where stomata began to close in coincidence with starting vein cavitation. Vein embolism was detected by infiltrating leaves at different ΨL with 0.7 mM fluorescein and measuring the percentage fluorescent area as percentage of total leaf surface area. A distinct loss of vein functionality (up to 50%) was found to occur in leaves at progressively decreasing ΨL, starting when leaves reached ΨCAV. A linear positive relationship with high statistical significance was found to exist between gL and percentage leaf fluorescent area, thus indicating that stomata were sensitive to vein embolism. The hydraulic conductance (KL) of the leaf was affected by leaf dehydration less than expected (KL decreased by about 20% between near full turgor and ΨL = ?1.3 MPa). When the extravascular leaf compartment was excluded either by killing cells by immersing leaves in 70% ethanol or by cutting the main leaf venous system through to allow flow to bypass it, KL turned out to increase 5.5 times, thus suggesting that the high dominance of the hydraulic resistance of the extravascular leaf compartment over the total leaf resistance might buffer or mask possibly large local changes in KL inducing stomatal closure.  相似文献   

12.
Among woody plants, grapevines are often described as highly vulnerable to water‐stress induced cavitation with emboli forming at slight tensions. However, we found native embolism never exceeded 30% despite low xylem water potentials (Ψx) for stems of field grown vines. The discrepancy between native embolism measurements and those of previous reports led us to assess vulnerability curve generation using four separate methods and alterations (i.e. segment length and with/without flushing to remove embolism prior to measurement) of each. Centrifuge, dehydration and air‐injection methods, which rely on measurement of percentage loss of hydraulic conductivity (PLC) in detached stems, were compared against non‐invasive monitoring of xylem cavitation with nuclear magnetic resonance (NMR) imaging. Short segment air‐injection and flushed centrifuge stems reached >90 PLC at Ψx of‐0.5 and ?1.5 MPa, respectively, whereas dehydration and long‐segment air‐injection measurements indicated no significant embolism at Ψx > ?2.0 MPa. Observations from NMR agreed with the dehydration and long segment air‐injection methods, showing the majority of vessels were still water‐filled at Ψx > ?1.5 MPa. Our findings show V. vinifera stems are far less vulnerable to water stress‐induced cavitation than previously reported, and dehydration and long segment air‐injection techniques are more appropriate for long‐vesseled species and organs.  相似文献   

13.
植物通过木质部管道系统进行水分运输, 木质部的水分运输效率和抗空穴化能力等水力结构特征对于植物物种的分布、抗逆能力等方面起关键性作用。目前, 国内外学者一般采用“冲洗法”进行木质部水力结构研究, 然而在该方法中使用的不同冲洗溶质可能对植物木质部水力结构等产生较大影响, 因此该文研究了3种溶质的冲洗溶液对毛白杨(Populus tomentosa)和油松(Pinus tabulaeformis)枝条的水力导度和抵抗空穴化能力的影响。实验结果表明: 相对于去离子水, 用0.01 mol·L-1的草酸和0.03 mol·L-1KCl溶液作为冲洗溶液, 均导致毛白杨木质部导管和油松管胞的水力导度测定值的增大。KCl导致毛白杨和油松木质部抵抗空穴化能力测定值的提高, 草酸导致杨树抵抗空穴化能力测定值增强, 但导致油松抗空穴化能力显著(p<0.01)减弱。小枝水平上, 毛白杨和油松的水分运输效率和抗空穴化能力之间没有显著相关性。另外, 在截枝实验中发现, 毛白杨小枝木质部水力导度随长度增加变化不大, 而油松枝条的木质部水力导度有逐渐增大的趋势。以上的实验结果表明不同溶质下毛白杨和油松枝条的木质部水力导度和抵抗空穴化能力不同, 草酸和KCl可能对木质部管道系统及纹孔处的果胶等产生作用, 从而使毛白杨和油松的水力结构发生变化。毛白杨与油松水力结构在去离子水、草酸和KCl的作用下的不同结果及两物种截枝试验下水力导度的不同变化趋势表明, 导管运输系统和管胞运输系统可能具有不同的水分运输影响因素。  相似文献   

14.
We studied 15 riparian and upland Sonoran desert species to evaluate how the limitation of xylem pressure (Ψ(x)) by cavitation corresponded with plant distribution along a moisture gradient. Riparian species were obligate riparian trees (Fraxinus velutina, Populus fremontii, and Salix gooddingii), native shrubs (Baccharis spp.), and an exotic shrub (Tamarix ramosissima). Upland species were evergreen (Juniperus monosperma, Larrea tridentata), drought-deciduous (Ambrosia dumosa, Encelia farinosa, Fouquieria splendens, Cercidium microphyllum), and winter-deciduous (Acacia spp., Prosopis velutina) trees and shrubs. For each species, we measured the "vulnerability curve" of stem xylem, which shows the decrease in hydraulic conductance from cavitation as a function of Ψ(x) and the Ψ(crit) representing the pressure at complete loss of transport. We also measured minimum in situ Ψ(x)(Ψ(xmin)) during the summer drought. Species in desert upland sites were uniformly less vulnerable to cavitation and exhibited lower Ψ(xmin) than riparian species. Values of Ψ(crit) were correlated with minimum Ψ(x). Safety margins (Ψ(xmin)-Ψ(crit)) tended to increase with decreasing Ψ(xmin) and were small enough that the relatively vulnerable riparian species could not have conducted water at the Ψ(x) experienced in upland habitats (-4 to -10 MPa). Maintenance of positive safety margins in riparian and upland habitats was associated with minimal to no increase in stem cavitation during the summer drought. The absence of less vulnerable species from the riparian zone may have resulted in part from a weak but significant trade-off between decreasing vulnerability to cavitation and conducting efficiency. These data suggest that cavitation vulnerability limits plant distribution by defining maximum drought tolerance across habitats and influencing competitive ability of drought tolerant species in mesic habitats.  相似文献   

15.
Although climate change will alter both soil water availability and evaporative demand, our understanding of how future climate conditions will alter tree hydraulic architecture is limited. Here, we demonstrate that growth at elevated temperatures (ambient +5 °C) affects hydraulic traits in seedlings of the deciduous boreal tree species Populus tremuloides, with the strength of the effect varying with the plant organ studied. Temperature altered the partitioning of hydraulic resistance, with greater resistance attributed to stems and less to roots in warm‐grown seedlings (P < 0.02), and a 46% (but marginally significant, P = 0.08) increase in whole plant conductance at elevated temperature. Vulnerability to cavitation was greater in leaves grown at high than at ambient temperatures, but vulnerability in stems was similar between treatments. A soil–plant–atmosphere (SPA) model suggests that these coordinated changes in hydraulic physiology would lead to more frequent drought stress and reduced water‐use efficiency in aspen that develop at warmer temperatures. Tissue‐specific trade‐offs in hydraulic traits in response to high growth temperatures would be difficult to detect when relying solely on whole plant measurements, but may have large‐scale ecological implications for plant water use, carbon cycling and, possibly, plant drought survival.  相似文献   

16.
The impact of xylem cavitation and embolism on leaf (K leaf) and stem (K stem) hydraulic conductance was measured in current-year shoots of Cercis siliquastrum L. (Judas tree) using the vacuum chamber technique. K stem decreased at leaf water potentials (ΨL) lower than ?1.0 MPa, while K leaf started to decrease only at ΨL L K leaf changes. Field measurements of leaf conductance to water vapour (g L) and ΨL showed that stomata closed when ΨL decreased below the ΨL threshold inducing loss of hydraulic conductance in the leaf. The partitioning of hydraulic resistances within shoots and leaves was measured using the high-pressure flow meter method. The ratio of leaf to shoot hydraulic resistance was about 0.8, suggesting that stem cavitation had a limited impact on whole shoot hydraulic conductance. We suggest that stomatal aperture may be regulated by the cavitation-induced reduction of hydraulic conductance of the soil-to-leaf water pathway which, in turn, strongly depends on the hydraulic architecture of the plant and, in particular, on leaf hydraulics.  相似文献   

17.
Vulnerability to cavitation of leaf minor veins and stems of Laurus nobilis L. was quantified together with that of leaflets, rachides and stems of Ceratonia siliqua L. during air‐dehydration of 3‐year‐old branches. Embolism was estimated by counting ultrasound acoustic emissions (UAE) and relating them to leaf water potential (ΨL). The threshold ΨL for cavitation was less negative in L. nobilis than in C. siliqua according to the known higher drought resistance of the latter species. Leaf minor vein cavitation was also quantified by infiltrating leaves with fluorescein at different dehydration levels and observing them under microscope. Distinct decreases in the functional integrity of minor veins were observed during leaf dehydration, with high correlation between the two variables. The relationship between leaf conductance to water vapour (gL) and ΨL showed that stomata of L. nobilis closed in response to stem and not to leaf cavitation. However, in C. siliqua, gL decreased in coincidence to the leaf cavitation threshold, which was, nevertheless, very close to that of the stem. The hypothesis that stem cavitation acts as a signal for stomatal closure was confirmed, while the same role for leaf cavitation remains an open problem.  相似文献   

18.
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.  相似文献   

19.
Intra- and inter-plant variation in xylem cavitation in Betula occidentalis   总被引:10,自引:5,他引:5  
A modified version of a method that uses positive air pressures to determine the complete cavitation response of a single axis is presented. Application of the method to Betula occidentalis Hook, gave a cavitation response indistinguishable from that obtained by dehydration, thus verifying the technique and providing additional evidence that cavitation under tension occurs by air entry through interconduit pits. Incidentally, this also verified pressure-bomb estimates of xylem tension and confirmed the existence of large (i.e. >0·4 MPa) tensions in xylem, which have been questioned in recent pressure-probe studies. The air injection method was used to investigate variation within and amongst individuals of B. occidentalis. Within an individual, the average cavitation tension increased from 0·66±0·27 MPa in roots (3·9 to 10·7 mm diameter), to 1·17±0·10 MPa in trunks (12 to 16 mm diameter), to 1·36±0·04 MPa in twigs (3·9 to 5 mm diameter). Cavitation tension was negatively correlated with the hydraulically weighted mean of the vessel diameter, and was negatively correlated with the conductance of the xylem per xylem area. Native cavitation was within the range predicted from the measured cavitation response and in situ maximum xylem tensions: roots were significantly cavitated compared with minimal cavitation in trunks and twigs. Leaf turgor pressure declined to zero at the xylem tensions predicted to initiate cavitation in petiole xylem (1·5 MPa). Amongst individuals within B. occidentalis, average cavitation tension in the main axis varied from 0·90 to 1·90 MPa and showed no correlation with vessel diameter. The main axes of juveniles (2–3 years old) had significantly narrower vessel diameters than those of adults, but there was no difference in the average cavitation tension. However, juvenile xylem retained hydraulic conductance to a much higher xylem tension (3·25 MPa) than did adult xylem (2·25 MPa), which could facilitate drought survival during establishment.  相似文献   

20.
The effectiveness of several leaf water models (‘string‐of‐lakes’, ‘desert river’ and the Farquhar–Gan model) are evaluated in predicting the enrichment of leaf water along a maize leaf at different humidities. Progressive enrichment of both vein xylem water and leaf water was observed along the blade. At the tip, the maximum observed enrichment for the vein water was 17.6‰ at 50% relative humidity (RH) whereas that for the leaf water was 50‰ at 34% RH and 19‰ at 75% RH. The observed leaf water maximum was a fraction (0.5–0.6) of the theoretically possible maximum. The ‘string‐of‐lakes’ and ‘desert river’ models predict well the variation of leaf water enrichment pattern with humidity but overestimate the average enrichment of bulk leaf water. However, the Farquhar–Gan model gives good prediction for these two aspects of leaf water enrichment. Using the anatomical dimensions of vein xylem overestimates the effective longitudinal Péclet number (Pl). Possible explanations for this discrepancy between the effective and the xylem‐based estimate of Pl are discussed. The need to characterize the heterogeneity of transpiration rate over the leaf surface in studies of leaf water enrichment is emphasized. The possibility that past atmospheric humidity can be predicted from the slope of the Δ18O spatial variation of leaf macrofossils found in middens is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号