首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

2.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

3.
叶片作为植物与外界进行物质交换的桥梁,其解剖性状能够相互协调以应对外界环境对植物生长造成的不利影响,从而反映出植物对环境变化所采取的适应策略。通过对黄土高原不同植被带(森林草原带、典型草原带、荒漠草原带)草地群落中常见115种植物(包括单子叶植物,双子叶植物,木本植物和草本植物四种功能型植物)叶片进行取样,并运用石蜡制片技术和光学显微技术获得叶片解剖性状(包括表皮厚度、栅栏组织厚度、海绵组织厚度、叶肉厚度和叶片厚度),旨在研究不同植被带内草地植物叶片解剖性状的变异规律及其与群落内物种相对优势度之间的关系,为黄土高原植被恢复和生态环境改善提供理论依据。结果表明:(1)沿着干旱梯度,从森林草原带、典型草原带到荒漠草原带,除叶肉厚度外,植物各叶片解剖性状值均呈现增大趋势,表明干旱地区叶片的旱生结构特征明显。(2)不同功能型植物叶片解剖性状与环境因子的关系各异。木本植物和草本植物的栅栏组织厚度和栅海比均与降水和土壤养分呈显著负相关关系(P<0.05)。同时,木本植物的叶片厚度与水分呈显著负相关关系(P<0.05),而草本植物表皮厚度仅与土壤养分呈显著负相关关系(P<0.05)...  相似文献   

4.
Decline in mesophyll conductance (gm) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3). Leaf anatomical traits are known to influence gm, but the potential effects of O3-induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3. The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm. We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3-induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3.  相似文献   

5.
The hydraulic conductance of the leaf lamina (Klamina) substantially constrains whole‐plant water transport, but little is known of its association with leaf structure and function. Klamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. Klamina varied from 7.40 × 10?5 kg m?2 s?1 MPa?1 for Acer saccharum shade leaves to 2.89 × 10?4 kg m?2 s?1 MPa?1 for Vitis labrusca sun leaves. Tree sun leaves had 15–67% higher Klamina than shade leaves. Klamina was co‐ordinated with traits associated with high water flux, including leaf irradiance, petiole hydraulic conductance, guard cell length, and stomatal pore area per lamina area. Klamina was also co‐ordinated with lamina thickness, water storage capacitance, 1/mesophyll water transfer resistance, and, in five of the six species, with lamina perimeter/area. However, for the six species, Klamina was independent of inter‐related leaf traits including leaf dry mass per area, density, modulus of elasticity, osmotic potential, and cuticular conductance. Klamina was thus co‐ordinated with structural and functional traits relating to liquid‐phase water transport and to maximum rates of gas exchange, but independent of other traits relating to drought tolerance and to aspects of carbon economy.  相似文献   

6.
Typical symptoms of potassium deficiency, characterized as chlorosis or withered necrosis, occur concomitantly with downregulated photosynthesis and impaired leaf water transport. However, the prominent limitations and mechanisms underlying the concerted decreases of leaf photosynthesis and hydraulic conductance are poorly understood. Monocots and dicots were investigated based on responses of photosynthesis and hydraulic conductance and their components and the correlated anatomical determinants to potassium deficiency. We found a conserved pattern in which leaf photosynthesis and hydraulic conductance concurrently decreased under potassium starvation. However, monocots and dicots showed two different hydraulic‐redesign strategies: Dicots tended to show a decreased minor vein density, whereas monocots reduced the size of the bundle sheath and its extensions, rather than the minor vein density; both of these strategies may restrain xylem and outside‐xylem hydraulic conductance. Additionally, potassium‐deprived leaves developed with fewer mesophyll cell‐to‐cell connections, leading to a reduced area being available for liquid‐phase flow. Further quantitative analysis revealed that mesophyll conductance to CO2 and outside‐xylem hydraulic resistance were the major contributors to photosynthetic limitation and increased hydraulic resistance, at more than 50% and 60%, respectively. These results emphasize the importance of potassium in the coordinated regulation of leaf photosynthesis and hydraulic conductance through modifications of leaf anatomy.  相似文献   

7.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

8.
刘培卫  张玉秀  杨云  陈波 《广西植物》2017,37(5):565-571
为比较沉香属不同种植物间的叶片形态解剖特征,将不同来源的六种沉香属植物在海南省兴隆南药园种植,运用石蜡切片法和撕片法对其成熟叶片的解剖特征进行观察,并对叶片的上下表皮,叶脉和叶横切面等12项数量性状进行统计分析。结果表明:六种沉香属植物叶片解剖结构基本一致,均为典型的异面叶,由表皮、叶肉和叶脉组成,表现出典型的旱生形态特点。表皮细胞单层,气孔微下陷,仅分布在下表皮,上下表皮上零星分布着表皮毛。叶肉组织发达,栅栏组织由1~2层排列紧密地圆柱状细胞组成,其间分布着大量的长方晶体,海绵组织内有一层排列较整齐,染色较深的异细胞组成的下皮层。主脉维管束双韧型,呈圆环状,内含大量异细胞。方差分析表明,除栅海比外,叶片厚度、叶脉条数、主脉厚度等其余11项数量指标在六种植物间差异均达到显著水平。聚类分析将这六种植物聚成3类,Aquilaria sinensis(白木香),A.crassna和A.banaensis聚为一类,A.baillonii和A.malaccensis聚为一类;A.yunnanensis(云南沉香)单独为一类。该研究结果为沉香属植物的物种鉴定提供了解剖学依据,同时对沉香属植物合理开发利用具有重要意义。  相似文献   

9.
Photosynthetic and anatomic responses of peanut leaves to cadmium stress   总被引:1,自引:0,他引:1  
Cadmium (Cd) treatments caused an inhibition in the net photosynthetic rate (P N) of peanut (Arachis hypogaea) plants, due to the reduction of stomatal conductance (g s) and photosynthetic pigment contents, as well as the alteration in leaf structure. The decrease of the transpiration rate and g s might result from the Cd-induced xerophyte anatomic features of leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as abundant and small stomata). The decline of P N was independent of the impairment in photosystem 2.  相似文献   

10.
Midday depressions in stomatal conductance (gs) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday gs of co‐occurring deciduous and evergreen tree species. Midday gs was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher gs at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and gs at midday than evergreen species. Our results suggest that midday gs is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.  相似文献   

11.
Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine‐scale bordered pit features in water‐conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non‐hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non‐hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood‐specific hydraulic conductivity, mass‐based net assimilation rate, stomatal conductance (gs), intercellular CO2 concentration (Ci) and the petiole vessel lumen diameters (Dv), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood‐ and leaf‐specific hydraulic conductivity and Dv. Pit density was positively correlated with gs, Ci and Dv, but negatively with intrinsic leaf water‐use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.  相似文献   

12.
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.  相似文献   

13.
Anatomical observations of leaves infected by Taphrina deformans were studied in tolerant peach trees (TPT) and in very susceptible (VSPT) ones. Leaves from the first sampling (2nd April) showed hyphae penetrating through the stomata or into the cuticle of the host tissue; anatomical structures of leaf sections were similar for both TPT and VSPT. The ultrastructure of the leaves of TPT showed seemingly normal mesophyll cells. In contrast, mesophyll cells of the VSPT showed important signs of degradation. Cells were organelle‐free and the middle lamella was expanded and invaded by hyphae of T. deformans. In some samples, the leaves of TPT showed deformed epidermal cells, loss of some spongy cells and increase of the intercellular spaces and division of the palisade cells. The pathogen proliferation in the leaves of the VSPT was considerably superior. In this case, stimulation of cell division occurred in the abaxial epidermis. Cells showed periclinal and oblique divisions, with an increased number of plasmodesmata; palisade or spongy cells were not differentiable. Leaves from TPT collected on 26th April showed hyphae with a non‐cylindrical section and with a squashed aspect. The hyphae were very evident in the intercellular spaces, showing abundant endoplasmic reticulum of rough type (RER) in the cytoplasm. On the other hand, epidermis of the leaves of the VSPT had numerous hyphae under the cuticle, which were growing in a thick pectin matrix. Leaves from TPT and VSPT collected on 6th May showed relevant differences. The leaves of TPT had a palisade mesophyll with fewer cells but with active chloroplasts. In contrast, the leaves from VSPT showed empty mesophyll cells, the cytoplasm was collapsed and the adaxial epidermis was covered with the fungus fructification. The observed anatomical and ultrastructural differences of leaves from TPT and VSPT confirm a different behaviour in plant‐host reaction at early stages of infection.  相似文献   

14.
采用常规石蜡制片技术和显微观察方法,对生长于滇西北玉龙雪山3 000~4 600m之间9个不同海拔高度的草血竭(Polygonum paleaceum)叶片表型及解剖结构进行比较研究,其目的是揭示该植物对不同海拔环境条件的响应特征,进而探讨植物对全球气候变化的生态适应性。结果显示:(1)草血竭叶片长度、宽度、长宽比均与海拔呈显著负相关关系,其降幅分别达84.64%、74.87%和37.50%。(2)草血竭叶片为异面叶,由表皮、叶肉、叶脉三部分组成;表皮细胞单层,角质层厚;叶肉的栅栏组织具2层或3层细胞;叶脉中的维管束呈1圈不连续的环状排列。(3)叶片厚度、栅栏组织厚度、海绵组织厚度、主脉厚度、以及主脉中维管束的长度和宽度均与海拔呈显著正相关关系,增幅分别达38.32%、47.30%、47.39%、156.46%、173.51%及337.42%;上表皮厚度、下表皮厚度、叶片紧密度、叶片疏松度、栅海比以及维管束的个数与海拔梯度之间的相关性则均不显著。研究表明,随着海拔升高,草血竭叶片形态结构的改变主要是有利于植物降低蒸腾,增强储水性和提高光合效率。  相似文献   

15.
There is growing evidence that plant stomata have evolved physiological controls to satisfy the demand for CO2 by photosynthesis while regulating water losses by leaves in a manner that does not cause cavitation in the soil–root–xylem hydraulic system. Whether the hydraulic and biochemical properties of plants evolve independently or whether they are linked at a time scale relevant to plant stand development remains uncertain. To address this question, a steady‐state analytical model was developed in which supply of CO2 via the stomata and biochemical demand for CO2 are constrained by the balance between loss of water vapour from the leaf to the atmosphere and supply of water from the soil to the leaf. The model predicts the intercellular CO2 concentration (Ci) for which the maximum demand for CO2 is in equilibrium with the maximum hydraulically permissible supply of water through the soil–root–xylem system. The model was then tested at two forest stands in which simultaneous hydraulic, ecophysiological, and long‐term carbon isotope discrimination measurements were available. The model formulation reproduces analytically recent findings on the sensitivity of bulk stomatal conductance (gs) to vapour pressure deficit (D); namely, gs = gref(1 ? m × lnD), where m is a sensitivity parameter and gref is a reference conductance defined at D = 1 kPa. An immediate outcome of the model is an explicit relationship between maximum carboxylation capacity (Vcmax) and soil–plant hydraulic properties. It is shown that this relationship is consistent with measurements reported for conifer and rain forest angiosperm species. The analytical model predicts a decline in Vcmax as the hydraulic capacity of the soil–root–xylem decreases with stand development or age.  相似文献   

16.
17.
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower‐order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher‐order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (Kleaf). We further hypothesized that BS lignification would mediate the relationship of Kleaf to vein length per area. We analysed the dependence of Kleaf, and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside‐xylem pathways and lower Kleaf. Kleaf could be strongly predicted by vein length per area and highest lignified vein order (R2 = .69). The light‐response of Kleaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport.  相似文献   

18.
This study investigates responses in the leaf anatomy of Black Locust (Robinia pseudoacacia L.) to the atmospheric pollutants, SO2, NO2 and O3 and climate in Tehran. The anatomical variables studied include thickness of the leaf lamina and of its main constituent tissues and the length and density of stomata. We present evidence that, in response to urban air pollution, the spongy mesophyll layer is thinner, the upper cuticle of the leaf thicker and stomatal density and the ratio of palisade parenchyma to spongy parenchyma are increased. Similar responses were also detected in relation to a climatic gradient. Stomatal density and thickness of the leaf lamina and of its mesophyll layer were all higher under warmer drier conditions. This overlap in anatomical response to two very different suites of environmental variables may reflect a functional overlap between mechanisms designed to restrict water loss in dry climates and those that minimize the uptake of toxic gases in polluted habitats.  相似文献   

19.
Leaf tensile properties were compared between the mesic deciduous tree Prunus serrulata (var. "Kwanzan") and the xeric and sclerophyllous chaparral evergreen shrub Heteromeles arbutifolia (M. Roem). All values for biomechanical parameters for H. arbutifolia were significantly greater than those of P. serrulata. The fracture planes also differed between the two species with P. serrulata fracturing along the secondary veins, while H. arbutifolia most often fractured across the leaf irrespective of the vein or mesophyll position, thus yielding qualitative differences in the stress-strain curves of the two species. Anatomically, P. serrulata exhibits features typical for a deciduous mesophytic leaf such as a thin cuticle, a single layer of palisade mesophyll, isodiametric spongy mesophyll, and extensive reticulation of the laminar veins. Heteromeles arbutifolia leaves, however, are typically two- to three-fold thicker with a 35% higher dry mass/fresh mass ratio. The vascular tissue is restricted to the interface of the palisade and spongy mesophyll near the center of the leaf. Both epidermal layers have a thick cuticle. The palisade mesophyll is tightly packed and two to three layers thick. The spongy mesophyll cells are ameboid in shape and tightly interlinked both to other spongy cells as well as to the overlying palisade layer. We conclude that the qualitative and quantitative biomechanical differences between the leaves of these two species are likely due to a complex interaction of internal architectural arrangement and the physical/chemical differences in the properties of their respective cell walls. These studies illustrate the importance that morphological and anatomical correlates play with mechanical behavior in plant material and ultimately reflect adaptations present in the leaves of chaparral shrubs that are conducive to surviving in arid environments.  相似文献   

20.
Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col‐0) and four vein mutants (dot3‐111 and dot3‐134, and cvp1‐3 and cvp2‐1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf. Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf, indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号