首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We studied clone structure and degree of genotypic mixing of Solidago altissima L. (Asteraceae) clones in four old fields near Ithaca, New York. The fields differed in time from agricultural abandonment and were approximately 1, 5, 20, and 35 years old. In the three older fields, three 0.75 m2 plots were excavated intact and rhizome connections among ramets were mapped. In the youngest field 30 ramets were dug up singly. The genotype of all ramets was determined using electrophoresis of four polymorphic enzyme systems. Fields differed in the number and dispersion of genotypes within plots, and the degree of connection among ramets in the same clone. The one-year-old field was composed of single ramet genotypes which had probably established from seed the previous year. The five-year-old field contained many small contiguous clones of S. altissima with highly interconnected ramets. In the oldest two fields clones were highly intermixed and ramets of the same genotype were not extensively interconnected. These results demonstrate that clones of S. altissima display considerable phenotypic variability between fields and patterns of clone development may differ. The causes of this variability remain to be identified. We suggest that either selection for different genotypes or changing habitat conditions during succession may lead to changes in clone form.  相似文献   

2.
余鸽  龙凤来  刘建军  马青青  康永祥  黄建  曹庆 《生态学报》2017,37(14):4743-4753
很多竹类植物是典型的克隆植物,也是大熊猫的食物。研究典型竹子种群克隆结构的形成和发展对竹林的生产和抚育具有理论和实践意义,可为预测该竹林群落的演替趋势和大熊猫保护提供科学依据。利用SSR标记研究不同年龄A(7龄)、B(30龄)和C(60龄)巴山木竹种群的克隆结构和多样性,探讨小尺度范围内不同年龄巴山木竹种群的克隆结构及斑块的建立和发展。8对SSR引物共扩增出了118个位点,3个种群样地的256个样本共检测到了49个克隆(基因型),A、B和C种群分别检测出31、10个和8个克隆。随着种群年龄的增长,巴山木竹克隆面积增加,克隆数量减少;A和B样地各克隆分布格局为团块状,而C样地克隆既有团块状又有离散状。这一结果显示出在幼苗定居的初期,基株可能以短距离的克隆延伸为主从而呈现出团块状;而随着年龄的增长,克隆面积不断扩大,当复轴混生型的巴山木竹克隆受到强大的压迫时,基株可能会进行较多的单轴和长距离克隆延伸,呈现出离散状。Mantel检测和空间自相关分析都支持3个样地在小尺度范围内存在明显的克隆空间遗传结构。3个样地在10 m等级下显著的正相关空间遗传结构距离为3.1、28、48 m,X-轴截距为9.051、30.698和50.536,空间自相关系数的范围分别为0.1—0.167、0.008—0.703和0.006—0.735。由此可推断,随着年龄的增长,巴山木竹克隆斑块的规模在不断地扩大,同一克隆的分株数量增加,在均匀取样情况下,正相关空间遗传结构距离范围内取到具有相同基因型的可能性越大。A、B和C 3样地的基因型比率(G/N)为1、0.14和0.055,Simpson多样性指数(D)分别为1、0.876和0.744。这说明巴山木竹幼苗期基因型比例远远高于成年的竹林,随着年龄的增长巴山木竹克隆多样性虽有所降低,但由于有性繁殖的作用仍然保持了较高的多样性。聚类和主坐标分析均表明总体上各样地的克隆被聚为一类,但不同样地少数克隆的基因型有重叠和聚集,可推断出不同巴山木竹种群之间可能存在着基因流动和近似的克隆起源。  相似文献   

3.
A species ofSporothrix was consistently isolated from leaf spots and serious shoot infections on a clone ofEucalyptus grandis in Northern Natal, South Africa. The fungus was morphologically distinct from other species in the genus and is consequently described as a new taxon,S. eucalypti. Sporothrix eucalypti was shown to be highly virulent in pathogenicity tests on a number ofE. grandis clones. Significant differences amongst susceptibility of clones were also detected in these tests.Sporothrix eucalypti represents a new pathogen ofEucalyptus that has the potential to cause substantial damage to this host in South Africa and probably elsewhere in the world.  相似文献   

4.
马青青  刘建军  余鸽  刘伟  马亦生 《生态学报》2016,36(20):6496-6505
利用SSR分子标记技术分析了佛坪国家级自然保护区秦岭箭竹(Fargesia qinlingensis)的克隆多样性和克隆结构,以探讨小尺度范围内秦岭箭竹自然居群遗传变异的分布特征,对该种开花特性、高山地区生态环境维护和大熊猫的保护提供重要依据。结果表明7对SSR引物共扩增出79个位点,其中多态性位点77个,多态位点百分率(PPB)为97.47%。秦岭箭竹的142个分株共形成107个克隆,最大克隆可达5 m。克隆多样性略高于其他克隆植物的平均值(D=0.62,G/N=0.17,E=0.68),基因型比率(G/N)、Simpson指数(D)、平均克隆大小(N/G)和Fager均匀性指数(E)分别为0.7535、0.9680、1.3271和0.5109。克隆空间结构分析表明秦岭箭竹的克隆构型为密集型,各克隆呈镶嵌性分布,同一克隆的分株排列紧密。克隆聚类分析表明各克隆之间聚类不明显,总体上来自同一样地的克隆被聚为一类。空间自相关分析显示在空间距离为36 m范围内,分株比基株有更显著的空间遗传结构,空间自相关系数r的取值范围分别为0.084—0.626和0.024—0.288,说明克隆繁殖在一定程度上限制了空间遗传结构的范围。样地内秦岭箭竹个体在空间距离小于44 m时存在显著的正相关空间结构,特别是在4 m处表现出最大的空间自相关系数(r=0.626),表明空间距离相距4 m内的个体最有可能属于同一克隆,4 m比5 m更能表现出清晰的克隆结构,X-轴截距为52.280,代表了秦岭箭竹不规则克隆的平均最小长度。秦岭箭竹的克隆多样性和克隆结构与初始苗补充、花粉散播方式和微环境差异有关。  相似文献   

5.
Summary The costs and benefits, measured in terms of dry weight, of physiological integration between clonal ramets, were analysed in two experiments conducted on the clonal herb Glechoma hederacea. Firstly, integration between consecutively-produced ramets was examined in an experiment in which stolons grew from one set of growing conditions (either unshaded or shaded and either nutrient-rich or nutrient-poor) into conditions in which light or nutrient level was altered. Comparisons were made between the dry weight of the parts of the clones produced before and after growing conditions were changed, and the dry weights of the corresponding part of control clones subjected to constant growing conditions. In a second experiment, integration between two distinct parts of G. hederacea clones was investigated. In this experiment clones were grown from two connected parent ramets and the parts of the clone produced by each parent ramet were subjected independently to either nutrient-rich or nutrient-poor conditions. Ramets in resource-rich conditions provided considerable physiological support to those in resource-poor conditions. This was measured as a dry weight gain compared with the weight of the corresponding part of the control clones growing in resource-poor conditions. However, when stolons grew from resource-poor conditions into resource-rich conditions, there was no similar evidence of the resourcepoor ramtes receiving support from resource-rich ramets. Physiological integration did not result in dry weight gains when this would have necessitated basipetal translocation of resources.Because of the predominantly acropedal direction of movement of translocates in G. hederacea, the structure of the clone was important in determining the effectiveness of integration between ramets. Where physiological integration was effective, the cost to the supporting ramets in terms of dry weight was insignificant. Physiological integration allows clones to maintain a presence in less favourable sites with insignificant cost to ramets in favourable sites, thereby reducing the probability of invasion by other plants, and providing the potential for rapid clonal growth if conditions improve. Integrated support of ramets in unfavourable conditions also enables the clone to grow through unfavourable sites, thus increasing the probability of encountering more favourable conditions by wider foraging.  相似文献   

6.
Pauliukonis  Nijole  Gough  Laura 《Plant Ecology》2004,173(1):1-15
Although clonal growth is a dominant mode of plant growth in wetlands, the importance of clonal integration, resource sharing among ramets, to individual ramet generations (mother and daughter) and entire clones of coexisting species has not been well investigated. This study evaluated the significance of clonal integration in four sedge species of varying ramet aggregations, from clump-forming species (Clumpers –Carex sterilis, Eleocharis rostellata), with tightly aggregated ramets (rhizomes<1cm), to runner species (Runners –Schoenoplectus acutus, Cladium mariscoides), with loosely aggregated ramets. We manipulated clonal integration by either severing connections between target mother and daughter ramets or leaving connections intact, and then planted them in an intact neighborhood of a fen in Michigan, USA. We measured growth parameters of original and newly produced ramets over two growing seasons and conducted a final biomass harvest, to address four hypotheses. First, we expected integrated clones to accumulate more biomass than severed clones. However, final clone-level biomass and ramet production were the same for both treatments in all species although severing initially stimulated ramet production by Schoenoplectus and produced a more compact ramet aggregation in Cladium. Second, we hypothesized that mother ramets would experience a cost of integration, through reduced ramet or biomass production, while daughters would experience a benefit, through increased resource availability from mothers. Mother ramets of Cladium suffered a cost from integration, while Schoenoplectus mothers suffered a slight cost and Carex daughters saw a slight benefit. Finally, we hypothesized that integration would be more active in runner species than in clumper species. Indeed, we documented more active integration in runners than clumpers, but none of the study species were dependent upon integration for growth or survival once daughter ramets were established with their own roots and shoots. This study demonstrates that integration between established ramets may not be the most important advantage to clonal growth in this wetland field site. The loss of integration elicited varied responses among coexisting species in their natural habitat, somewhat but not completely related to their growth form, suggesting that a combination of plant life history traits contributes to the dependence upon clonal integration among established ramets of clonal species.  相似文献   

7.
A clonal plant in heterogeneous environments is usually expected to profit from resource exchange via a clonal network where ramets placed in contrasting environments can specialise so to acquire the most abundant resources. An experiment was designed using the three member clonal system of Eriophorum angustifolium, which consisted of one parent ramet growing in a resource poor environment and two offspring: one was limited in growth by nutrients while the other was light limited; the contrast in availability of limited resources between the offspring ramets was high, medium or none, with the system either connected or severed. The total resource availability was the same in all treatments. We proposed four possible scenarios for the system: offspring ramets will share resources via the deficient parent ramet, and the whole clone will profit from the contrasting environment (scenario 1); offspring ramets will support exclusively the parent ramet, and the whole clone will profit from a homogeneous environment (scenario 2); offspring ramets will stop the export of the limiting resource to the parent ramet, with split and connected treatments not differing (scenario 3); and offspring ramets will exhaust the carbon stored in the biomass of the parental ramet; offspring ramet will profit from connection (scenario 4). In the experiment, the limiting resources were sent to the strongest sink (scenario 2). The parent ramet growing in a deficient environment received the highest support in the treatment where both offspring ramets were growing in the same conditions (no-contrast treatment). Production of new shoots, but not biomass of whole clone, was supported in a homogenous environment. The experiment revealed that multiple stresses might prohibit free exchange of limiting resources via the clonal network and supports the idea that experimental studies on more complex clones are essential for understanding the costs and benefits of clonal growth.  相似文献   

8.
We studied fitness consequences of clonal integration in 27 genotypes of the stoloniferous herb Ranunculus reptans in a spatially heterogeneous light environment. We grew 216 pairs of connected ramets (eight per genotype) with mother ramets in light and daughter ramets in shade. In half of the pairs we severed the stolon connection between the two ramets at the beginning of the experiment. During the experiment, 52.7% of the ramet pairs with originally intact connection physically disintegrated. We detected significant variation among genotypes in this regard. Survival of planted ramets was 13.3% higher for originally connected pairs. Moreover, there was significant variation among genotypes in survival, in the difference in survival between plant parts developing from mother and daughter ramets, and in the effect of integration on this difference. In surviving plants connection between ramets decreased size differences between mother and daughter parts. Variation among genotypes was significant in growth and reproduction and marginally significant in the effect of physiological integration on growth and reproduction. Connected daughter ramets had longer leaves and internodes than daughters in severed pairs indicating that integration stimulated plant foraging in both the vertical and the horizontal plane. Observed effects of integration on fitness components in combination with genetic variation in maintenance and effects of connection indicate that clonal integration in R. reptans has the capability to evolve, and therefore suggest that clonal integration is adaptive. If genetic variation in integration is common, future studies on clonal integration should always use defined genetic material and many clones to allow extrapolation of results to population and wider levels.  相似文献   

9.
以巨桉优良无性系EG5和GL1组培苗为材料,在生根培养基中分别加入0、0.005、0.01、0.05、0.10、0.20 mg.L-1的油菜素内酯,研究其对桉树组培苗中不定根的诱导、茎的生长以及茎基部细胞分化的影响。结果表明:油菜素内酯对巨桉无性系EG5的生根率和苗高具有显著影响,无性系EG5在含有0.005 mg.L-1油菜素内酯的生根培养基中达到最高为76.6%的生根率,同时组培苗的苗高随着油菜素内酯浓度的增加而呈现出逐渐降低的趋势。对于巨桉无性系GL1,在生根培养基中添加0.05 mg.L-1油菜素内酯达到最高为88.3%的生根率,不同浓度的油菜素内酯对苗高没有显著影响。同时也发现油菜素内酯明显抑制了无性系EG5不定根的根长,随着其浓度的增加根长逐渐变短;而根条数表现为低浓度时无显著影响,在高浓度时显著性降低,且油菜素内酯对侧根的诱导和分化不起作用。另外通过对无性系EG5生根植株基部的组织切片和化学染色分析表明,油菜素内酯在0.10 mg.L-1时能促进桉树基部的形成层和木质部的分化,这可能是抑制不定根诱导和分化的原因之一。  相似文献   

10.
Clonal fragments of Glechoma hederacea L. (Lamiaceae) were subjected to environments in which light and nutrients were supplied with a strictly negative association in space, i.e. when one of these resources was in ample supply the other was scarce. Treatments were chosen to simulate environments in which clones grew either within homogeneous conditions or across patch types (heterogeneous conditions). The hypothesis was tested that reciprocal translocation (i.e. exchange of both nutrients and assimilates) between connected groups of ramets would increase biomass production of clones growing under heterogeneous conditions compared to that of clones growing in homogeneous conditions. A cost-benefit analysis was carried out to test this hypothesis. Results suggested that reciprocal translocation did not occur at the structural scale considered in this experiment; no evidence was found for a significant effect on whole clone biomass of assimilate and/or nutrient translocation between clone parts experiencing contrasting levels of resource supply. It is suggested that predominantly acropetal movement of resources and the pattern of integrated physiological unit formation in G. hederacea are the main properties responsible for the lack of mutual physiological support between connected clonal fragments growing in differing habitat conditions. These properties are expected to promote clonal expansion and the exploitation of new territory, rather than sustaining clone parts in sub-optimal patches of habitat for prolonged periods of time.  相似文献   

11.
Aquatic plant invasions are often associated with long‐distance dispersal of vegetative propagules and prolific clonal reproduction. These reproductive features combined with genetic bottlenecks have the potential to severely limit genetic diversity in invasive populations. To investigate this question we conducted a global scale population genetic survey using amplified fragment length polymorphism markers of the world’s most successful aquatic plant invader –Eichhornia crassipes (water hyacinth). We sampled 1140 ramets from 54 populations from the native (South America) and introduced range (Asia, Africa, Europe, North America, Central America and the Caribbean). Although we detected 49 clones, introduced populations exhibited very low genetic diversity and little differentiation compared with those from the native range, and ~80% of introduced populations were composed of a single clone. A widespread clone (‘W’) detected in two Peruvian populations accounted for 70.9% of the individuals sampled and dominated in 74.5% of the introduced populations. However, samples from Bangladesh and Indonesia were composed of different genotypes, implicating multiple introductions to the introduced range. Nine of 47 introduced populations contained clonal diversity suggesting that sexual recruitment occurs in some invasive sites where environmental conditions favour seedling establishment. The global patterns of genetic diversity in E. crassipes likely result from severe genetic bottlenecks during colonization and prolific clonal propagation. The prevalence of the ‘W’ genotype throughout the invasive range may be explained by stochastic sampling, or possibly because of pre‐adaptation of the ‘W’ genotype to tolerate low temperatures.  相似文献   

12.
The relationship of differences in life history traits among genotypes to competitive ability is not well known for most clonal plants. It has been hypothesized that genetically identical clones will compete more intensively than genetically distinct clones. The perennial grass Amphibromus scabrivalvis, which produces basal corms and cleistogamous seeds enclosed by leaf sheaths, exhibits pronounced clonal growth via rhizome and ramet production. In a controlled greenhouse experiment, clones of four genotypes of this species were grown under three regimes: alone in the absence of competition, paired with a clone of the same genotype (intraclonal competition), and paired with a clone of a different genotype (interclonal competition). There were differences in some biomass measures and in ramet and corm production among the four genotypes grown in the absence of competition. All genotypes showed a significant reduction in total biomass under both intra- and interclonal conditions, indicating that competition had occurred. For three of four genotypes, biomass allocation to corm increased under competition, while allocation to cleistogamous seeds was constant or increased slightly. Although some genotypes in specific interclonal combinations were less affected by competition than in intraclonal combinations, there was no support for the contention that the effects of competition were more intense for genetically identical clones.  相似文献   

13.
Clonal plants have the ability to spread and survive over long periods of time by vegetative growth. For endangered species, the occurrence of clonality can have significant impacts on levels of genetic diversity, population structure, recruitment, and the implementation of appropriate conservation strategies. Here we␣examine clone structure in three populations of Ambrosia pumila (Nutt.) Gray (Asteraceae), a federally endangered clonal species from southern California. Ambrosia pumila is a perennial herbaceous species spreading from a rhizome, and is frequently found in dense patches of several hundred stems in a few square meters. The primary habitat for this species is upper terraces of rivers and drainages in areas that have been heavily impacted by anthropogenic disturbances and changing flood regimes. RAPD markers were employed to document the number and distribution of clones within multiple 0.25 m2 plots from each of three populations. Thirty-one multi-locus genotypes were identified from the 201 stems sampled. The spatial distribution of clones was limited with no genotypes shared between plots or populations. Mean clone size was estimated at 9.10 ramets per genet. Genets in most plots were intermingled, conforming to a guerrilla growth form. The maximum genet spread was 0.59 m suggesting that genets can be larger than the sampled 0.25 m2 plots. Spatial autocorrelation analysis found a lack of spatial genetic structure at short distances and significant structure at large distances within populations. Due to the occurrence of multiple genets within each population, the limited spread of genets, and a localized genetic structure, conservation activities should focus on the maintenance of multiple populations throughout the species range.  相似文献   

14.
《Aquatic Botany》2007,87(3):242-246
The information on diversity and spatial distribution of clones of an invasive clonal plant is crucial for the understanding of its clonal structure and invasive history. In this paper, random amplified polymorphic DNA (RAPD) markers were used to explore the clonal diversity and clonal structure of Eichhornia crassipes (Mart.) Solms in natural populations, and their possible effects on the plant success as an invader are also discussed. Five populations covering the entire distribution area in China were studied, sampling 43 individuals per population at an interval of 1 m in a sampling plot. Twelve RAPD primers produced 69 reproducible bands, with 22 being polymorphic. Only five RAPD phenotypes (clones) were detected in these five populations, but each population consisted of at least three clones, contrary to the traditional expectations that E. crassipes populations should be monoclonal. The diversity of clones within populations is thought to be mainly resulted from multiple introductions by humans. The evenness of distribution of clones varied slightly and most clones were widespread, suggesting clonal growth is the predominant mode of regeneration in all the populations. A single clone dominated each population and this clone might be the first one introduced into China or the genotype with a higher phenotypic plasticity, which could survive and reproduce via clonal growth in various habitats. The clones in each population were highly intermixed, especially in river populations, suggesting this species has a guerilla clonal structure which can be facilitated by water current.  相似文献   

15.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

16.
Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput marker technology for the construction of high-density genetic linkage maps. Eucalyptus grandis and Eucalyptus urophylla are commonly used to produce fast-growing, disease tolerant hybrids for clonal eucalypt plantations in tropical and subtropical regions. We analysed 7,680 DArT markers in an F2 pseudo-backcross mapping pedigree based on an F1 hybrid clone of E. grandis and E. urophylla. A total of 2,440 markers (31.7%) were polymorphic and could be placed in linkage maps of the F1 hybrid and two pure-species backcross parents. An integrated genetic linkage map was constructed for the pedigree resulting in 11 linkage groups (n = 11) with 2,290 high-confidence (LOD ≥ 3.0) markers and a total map length of 1,107.6 cM. DNA sequence analysis of the mapped DArT marker fragments revealed that 43% were located in protein coding regions and 90% could be placed in the recently completed draft genome assembly of E. grandis. Together with the anchored genomic sequence information, this linkage map will allow detailed genetic dissection of quantitative traits and hybrid fitness characters segregating in the F2 progeny and will facilitate the development of markers for molecular breeding in Eucalyptus.  相似文献   

17.
Cirsium rivulare is a perennial plant that forms patches consisting of ramets resulting from sexual reproduction by seeds and asexual propagation by rhizome fragmentation. We examined the relationship between the size of patches and genetic differentiation of ramets within and between patches. Ramet genotypes were identified using microsatellites. From among 216 ramets examined in the studied population, 123 had a unique genotype, while 93 were clonal, i.e., their genotype was present in at least two ramets. The frequency of ramets with clonal genotypes was 43% and the frequency of unique genotypes was 57%. Ramets with identical genotypes were dominant in small patches. Large patches consisted of ramets with both unique and clonal genotypes, usually with the predominance of the latter. A molecular variance analysis showed the highest level of variance between ramets and the lowest between patches. Additionally, 21.02% of the total variance was recorded between ramets and within patches. The size of patches was correlated with the number of clonal ramets and the number of unique ramets, but it was not correlated with the clonality index. This population of C. rivulare is currently in a phase of decline from 30 years of vegetation transformation, and there appears to have been an increase in sexual propagation based growth over clonal propagation based growth. Hence, a predominance of ramets with unique genotypes was observed. This can happen as a result of disintegration of large patches and formation of gaps between them. These gaps become convenient places for seed germination and the subsequent development of seedlings.  相似文献   

18.
Summary Lathyrus sylvestris is a pioneer legume often found in disturbed habitats. Mainly reproduced through vegetative propagation, this clonal species presents a system of ramets that remain connected for several years. The existence of carbon transfer among ramets within a clone has been studied using 14C in situ. Assimilate translocation from primary to secondary ramets was observed in all clones when the primary ramet was exposed to 14CO2. The amount of transfer ranged from trace up to 90% of the total 14C incorporated. However, in only half of the clones there was consistent enrichment of the secondary ramet (5 to 89%) suggesting that interramets transfer of carbon may be facultative. Furthermore, when significant export occurred from the primary ramet, it was always principally towards only one ramet even when the clone included more than one. The transfer of 14C from secondary to primary ramets was shown to be significant only when photosynthesis of the latter was decreased by shading. In this case import of carbon was never more than 60% of the incorporated 14C.No correlation was found between age or size of the ramets and the intensity of transfer. The shading effect let suppose that transfers are mainly driven by carbon limitation due to changing environmental conditions and not to the state of ramet maturity. The adaptative advantage of such facultative physiological integration between ramets of a clone is discussed.  相似文献   

19.
In plant species, when clonal growth produces a patchy structure and flowering ramets are clustered, the amount of pollen contributing to reproductive success is often regulated by pollinator efficiency and geitonogamy. The spatial population structure may influence reproductive success. We examined the clonal structure, the spatial ramet distribution, and their combined effects on fruit set in a natural population of the insect-pollinated, self-incompatible clonal herb, Convallaria keiskei, in northern Japan. The number of shoots, flowers, and fruits in 1-m2 quadrats were counted at every 5 m grid point in an established 100 × 90-m study plot. From all the quadrats where shoots existed, leaf samples were collected for allozyme analysis. Using the two spatial parameters of flowering ramet densities and genotypes, we then constructed individual-based fruit-set models. A total of 236 quadrats contained shoots, and 135 contained flowering ramets, which indicated expanded distribution of this plant throughout the study plot, while shoots, flowers and fruits all showed clustering distributions. Allozyme analysis of 282 samples revealed 94 multilocus genotypes. The largest clone extended to more than 40 m, whereas 56 genotypes were detected in only one sample. Several large clones and many small clones were distributed close to each other. Fine-scale spatial modelling revealed that the neighbouring flower numbers of different genotypes, compared with local genet or flower diversity, more influenced fruit set, in which the range of the neighbour was 14.5 m. These findings indicate that the compatible pollen dispersed by insect pollinators has a significant effect on sexual reproduction, in this C. keiskei population. Consequently, the spatial structure, which includes both genet distribution and clonal expansion by ramets, had a significant effect on pollination success.  相似文献   

20.
Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号