首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Conformational properties of the peptides containing (Δ(Z)Phe)6 with achiral (ΔAla, Gly) and chiral (Ala, Leu) residues at both the N- and C-terminal positions have been studied with a view to design a peptide with desired helical screw sense. In all the peptides, the lowest energy conformational state corresponds to Φ = 0° and Ψ = + 90° or - 90° or both +/- 90°. These structures are characterized by rise per residue of 1.94 ?; rotation per residue of 114° and 3.12 residues per turn and are stabilized by: (i) carbonyl-carbonyl interactions with the carbonyl oxygen of ith residue and carbonyl carbon atom of the carbonyl group of ith+1 residue; and (ii) N-H....π interactions between the amino group of Δ(Z)Phe and its own aromatic moiety. The Ala/Leu residues at the N-terminus further stabilized the structure, through C-H....π interactions with the farthest edge of the aromatic ring of ith+3 Δ(Z)Phe residue. For peptides Ac-L-Ala/L-Leu-(Δ(Z)Phe)6-NHMe, the low energy left handed helical structure (approximately 2.5 Kcalmol?1 higher in energy) state corresponds to Φ = -30°, Ψ = 120° for L-residue and Φ = Ψ = 30° for Δ(Z)Phe residues and is in good agreement with the X-ray crystallography results for the peptide Boc-L-Ala-(Δ(Z)Phe)4-NHMe crystals grown from acetonitrile/ethanol mixture. Computational results suggest that the peptides Ac-DAla/D-Leu-(Δ(Z)Phe)6-NHMe adopt a right handed helical structure in polar solvents with Φ = 30°, Ψ = -120° for D-residues and Φ = Ψ = -30° for Δ(Z)Phe residues. Both in the left handed and right handed structures, the carbonyl oxygen of acetyl group is involved in 10-membered hydrogen bonded ring formation with NH of 3rd Δ(z)Phe residue whereas Δ(Z)Phe residues backbone adopts a 3?? helix structure. Computational results also suggest that the conformational state with Φ = 0° and Ψ = 90° can be realized by keeping D-Ala or D-Leu at the C-terminal. There is hardly any effect of achiral residues Gly/ΔAla on the conformational behaviour of poly-Δ(Z)Phe.  相似文献   

2.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

3.
Nandel FS  Jaswal R 《Biomacromolecules》2007,8(10):3093-3101
alpha,beta-Dehydroamino acid residues due to the presence of Calpha = Cbeta double bond influences the main chain and the side chain conformations. These residues have interesting chemical features including the increased resistance to enzymatic degradation. The chain length dependent conformational behavior of poly alpha,beta-dehydroleucine (DeltaLeu) peptides in both the pure forms Z and E and their various combinations like alternate ZE/EZ etc. have been investigated by using quantum mechanical method PCILO (perturbative configuration interaction of localized orbitals). The conformational states in alternate Z and E forms, with Phi, Psi values of -10 degrees , 105 degrees /1 degrees , -88 degrees for Z form and 35 degrees , 22 degrees /-34 degrees , -27 degrees for the E form are found to be the most stable and degenerate than the states in pure Z and E forms and the EZ form etc. The repeated Phi, Psi values give rise to altogether new types of left and right handed helices, and their stability increases with increasing chain length. These structures are stabilized by intramolecular hydrogen bonding, carbonyl-carbonyl interactions and hydrophobic interactions between the side chains of DeltaZLeu and DeltaELeu residues. The 2(7) ribbon structure (seven-membered hydrogen-bonded ring involving two consecutive amino acid residues) is found to be most stable and degenerate in the pentapeptide Ac-DeltaELeu5-NHMe, due to the formation of maximum hydrogen bonds. A right-handed template from achiral DeltaLeu peptides has been achieved by incorporating L-Leu at the C-terminal or D-Leu at the N-terminal.  相似文献   

4.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

5.
Ousaka N  Inai Y  Okabe T 《Biopolymers》2006,83(4):337-351
Chiral interaction of helical peptide with chiral molecule, and concomitant induction in its helix sense have been demonstrated in optically inactive nonapeptide (1) possessing Gly at its N-terminus: H-Gly-(Delta(Z)Phe-Aib)(4)-OCH(3) (1: Delta(Z)Phe = Z-dehydrophenylalanine; Aib = alpha-aminoisobutyric acid). Spectroscopic measurements [mainly nuclear magnetic resonance (NMR) and circular diochroism (CD)] as well as theoretical simulation have been carried out for that purpose. Peptide 1 in the 3(10)-helix tends to adopt preferentially a right-handed screw sense by chiral Boc-L-amino acid (Boc: t-butoxycarbonyl). Induction in the helix sense through the noncovalent chiral domino effect should be derived primarily from the complex supported by the three-point coordination on the N-terminal sequence. Thus the 3(10)-helical terminus consisting of only alpha-amino acid residues enables chiral recognition of the Boc-amino acid molecule, leading to modulation of the original chain asymmetry. Dynamics in the helix-sense induction also have been discussed on the basis of a low-temperature NMR study. Furthermore, the inversion of induced helix sense has been achieved through solvent effects.  相似文献   

6.
Four diastereomeric‐Leu‐Leu‐Aib‐Leu‐Leu‐Aib‐peptides, Boc‐D ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (1), Boc‐L ‐Leu‐D ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (2), Boc‐L ‐Leu‐L ‐Leu‐Aib‐D ‐Leu‐L ‐Leu‐Aib‐OMe (3), and Boc‐L ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐D ‐Leu‐Aib‐OMe (4), were synthesized. The crystals of the four hexapeptides were characterized by X‐ray crystallographic analysis. Two diastereomeric hexapeptides 1 and 2 having D ‐Leu(1) or D ‐Leu(2) were folded into right‐handed (P) 3 10 ‐helical structures, while peptide 3 having D ‐Leu(4) was folded into a turn structure nucleated by type III′ and I$' \bf{\beta}$ ‐turns, and peptide 4 having D ‐Leu(5) was folded into a left‐handed (M) 3 10 ‐helical structure. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The lipopeptaibol trichogin GA IV is a natural, non-ribosomally synthesized, antimicrobial peptide remarkably resistant to the action of hydrolytic enzymes. This feature may be connected to the multiple presence in its sequence of the non-coded residue α-aminoisobutyric acid (Aib), which is known to be responsible for the adoption of particularly stable helical structures already at the level of short peptides. To investigate the role of Aib residues on the 3D-structure and bioactivity of trichogin GA IV, we synthesized and fully characterized four analogs where one or two Aib residues are replaced by L-Leu. Our extensive conformational studies (including an X-ray diffraction analysis) and biological assays performed on these analogs showed that the Aib to L-Leu replacements do not affect the resistance to proteolysis, but modulate the bioactivity of trichogin GA IV in a 3D-structure related manner.  相似文献   

8.
Two designed peptide sequences containing Trp residues at positions i and i + 5 (Boc-Leu-Trp-Val-Ala-Aib-Leu-Trp-Val-OMe, 1) as well as i and i + 6 (Boc-Leu-Trp-Val-Aib-Ala-Aib-Leu-Trp-Val-OMe, 2) containing one and two centrally positioned Aib residues, respectively, for helix nucleation, have been shown to form stable helices in chloroform solutions. Structures derived from nuclear magnetic resonance (NMR) data reveal six and seven intramolecularly hydrogen-bonded NH groups in peptides 1 and 2, respectively. The helical conformation of octapeptide 1 has also been established in the solid state by X-ray diffraction. The crystal structure reveals an interesting packing motif in which helical columns are stabilized by side chain-backbone hydrogen bonding involving the indole Nepsilon1H of Trp(2) as donor, and an acceptor C=O group from Leu(6) of a neighboring molecule. Helical columns also associate laterally, and strong interactions are observed between the Trp(2) and Trp(7) residues on neighboring molecules. The edge-to-face aromatic interactions between the indoles suggest a potential C-H...pi interaction involving the Czeta3H of Trp(2). Concentration dependence of NMR chemical shifts provides evidence for peptide association in solution involving the Trp(2) Nepsilon1H protons, presumably in a manner similar to that observed in the crystal.  相似文献   

9.
The peptide Boc-Val1-deltaPhe2-Leu3-Ala4-deltaPhe5-Ala6-OMe has been examined for the structural consequence of placing a two-residue segment between the deltaPhe residues. The peptide is stabilized by four consecutive beta-turns. The overall conformation of the molecule is a right-handed 3(10)-helix, with average (phi, psi) values (-67.7 degrees, -22.7 degrees), unwound at the C-terminus. The 1H NMR results also suggest that the peptide maintains its 3(10)-helical structure in solution as observed in the crystal state. The crystal structure is stabilized through head-to-tail hydrogen bonds and a repertoire of aromatic interactions laterally directed between adjacent helices, which are antiparallel to each other. The aromatic ring of deltaPhe5 forms the hub of multicentred interactions, namely as a donor in aromatic C-H...pi and aromatic C-H...O=C interactions and as an acceptor in a CH3...pi interaction. The present structure uniquely illustrates the unusual capability of a deltaPhe ring to host such concerted interactions and suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.  相似文献   

10.
To understand how chemical structure of beta-substituted alpha, beta-dehydroalanine (particularly size and pi conjugation of beta substituent) affects conformational property, x-ray crystallographic analysis was performed on Boc-Ala-Delta(Z) Nap-Val-OMe [Boc: t-butoxycarbonyl; Delta(Z) Nap: (Z)-beta-(1-naphthyl)dehydroalanine; OMe: methoxy] having the naphthyl group as a bulky beta substituent. Single crystals were grown by slow evaporation from an ethanol solution in the triclinic space group P1 with a = 9.528 (3) A, b = 12.410(4) A, c = 5.975(2) A, alpha = 96.77(3) degrees, beta = 102. 81(2) degrees, gamma = 88.74(3) degrees, V = 684.1(4) A3, and Z = 1. Phase determination was carried out by a direct method (SHELEXS), and the final structure was refined to R = 8.1% and R(w) = 9.0% for 1964 observed reflections. The bond lengths and bond angles of the Delta(Z)Nap residue, characterized by a sp(2) hybridized C(alpha) atom, did not differ from those of other dehydroresidues such as Delta(Z) Phe, Delta(Z) Leu, and DeltaVal essentially. The peptide backbone took a type II beta-turn conformation involving an intramolecular hydrogen bond between CO(Boc) and NH(Val), similar to di- or tripeptides containing a Delta(Z) Phe or Delta(Z) Leu residue in the second positions. Here the naphthyl group was found to be nonplanar [chi(2) = 55(1) degrees ] relative to the C(alpha)==C(beta)==C(gamma) plane. The nonplanarity was supported by conformational energy calculation. The molecular packing was stabilized by two kinds of intermolecular hydrogen bonds and van der Waals interactions. Naphthyl groups were arranged in a partially overlapped face-to-face orientation with a center-to-center distance of 5.97 A. For additional information, peptide Boc-(Ala-Delta(Z) Nap-Leu)(2)-OMe was synthesized and its solution conformation was investigated by (1)H-NMR spectroscopy. The hexapeptide showed the tendency to form a 3(10)-helical conformation in solution essentially. Conformational properties of Delta(Z) Nap residue, characterized by a type II beta-turn and 3(10)-helix, were supported by a conformational energy contour map of the Delta(Z)Nap residue.  相似文献   

11.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

12.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Inai Y  Komori H 《Biomacromolecules》2004,5(4):1231-1240
The noncovalent chiral domino effect (NCDE), defined as chiral interaction upon an N-terminus of a 3(10)-helical peptide, will provide a unique method for structural control of a peptide helix through the use of external chirality. On the other hand, the NCDE has not been considered to be effective for the helicity control of peptides strongly favoring a one-handed screw sense. We here aim to promote the NCDE on peptide helicity using two types of nonapeptides: H-beta-Ala-Delta(Z)Phe-Aib-Delta(Z)Phe-X-(Delta(Z)Phe-Aib)(2)-OCH(3) [Delta(Z)Phe = alpha,beta-didehydrophenylalanine, Aib = alpha-aminoisobutyric acid], where X as the single chirality is L-leucine (1) or L-phenylalanine (2). NMR, IR, and CD spectroscopy as well as energy calculation revealed that both peptides alone form a right-handed 3(10)-helix. The original CD amplitudes or signs in chloroform, irrespective of a strong screw-sense preference in the central chirality, responded sensitively to external chiral information. Namely added Boc-L-amino acid stabilized the original right-handed helix, while the corresponding d-isomer destabilized it or transformed it into a left-handed helix. These peptides were also shown to bind more favorably to an L-isomer from the racemate. Although similar helicity control was observed for analogous nonapeptides bearing an N-terminal Aib residue (Inai, Y.; et al. Biomacromolecules 2003, 4, 122), the present findings demonstrate that the N-terminal replacement by the beta-Ala residue significantly improves the previous NCDE to achieve more effective control of helicity. Semiempirical molecular orbital calculations on complexation of peptide 2 with Boc-(L or D)-Pro-OH reasonably explained the unique conformational change induced by external chirality.  相似文献   

14.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

15.
The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Synthetic peptides with defined secondary structure scaffolds, namely hairpins and helices, containing tryptophan residues, have been investigated in this study to probe the influence of a large number of aromatic amino acids on backbone conformations. Solution NMR investigations of Boc-W-L-W-(D)P-G-W-L-W-OMe (peptide 1), designed to form a well-folded hairpin, clearly indicates the influence of flanking aromatic residues at the (D)Pro-Gly region on both turn nucleation and strand propagation. Indole-pyrrolidine interactions in this peptide lead to the formation of the less-frequent type I' turn at the (D)Pro-Gly segment and frayed strand regions, with the strand residues adopting local helical conformations. An analog of peptide 1 with an Aib-Gly turn-nucleated hairpin (Boc-W-L-W-U-G-W-L-W-OMe (peptide 2)) shows a preference for helical structures in solution, in both chloroform and methanol. Peptides with either one (Boc-W-L-W-U-W-L-W-OMe (peptide 3)) or two (Boc-U-W-L-W-U-W-L-W-OMe (peptide 4)) helix-nucleating Aib residues give rise to the well-folded helical conformations in the chloroform solution. The results are indicative of a preference for helical folding in peptides containing a large number of Trp residues. Investigation of a tetrapeptide analog of peptide 2, Boc-W-U-G-W-OMe (peptide 5), in solution and in the crystal state (by X-ray diffraction), also indicates a preference for a helical fold. Additionally, peptide 5 is stabilized in crystals by both aromatic interactions and an array of weak interactions. Examination of Trp-rich sequences in protein structures, however, reveals no secondary structure preference, suggesting that other stabilizing interactions in a well-folded protein may offset the influence of indole rings on backbone conformations.  相似文献   

17.
One chiral L ‐valine (L ‐Val) was inserted into the C‐terminal position of achiral peptide segments constructed from α‐aminoisobutyric acid (Aib) and α,β‐dehydrophenylalanine (ΔZPhe) residues. The IR, 1H NMR and CD spectra indicated that the dominant conformations of the pentapeptide Boc‐Aib‐ΔPhe‐(Aib)2‐L ‐Val‐NH‐Bn (3) and the hexapeptide Boc‐Aib‐ΔPhe‐(Aib)3‐L ‐Val‐NH‐Bn (4) in solution were both right‐handed (P) 310‐helical structures. X‐ray crystallographic analyses of 3 and 4 revealed that only a right‐handed (P) 310‐helical structure was present in their crystalline states. The conformation of 4 was also studied by molecular‐mechanics calculations. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
In previous work, no chiral differences were found between D and L enantiomers of Leu in their ability to displace one another from the acid-extractable pool in mammalian cells. Recent evidence suggested otherwise. Our aim is to examine whether, in physiological range, D-amino acids have an equivalent ability to displace L-amino acids from the acid-extractable pool of HeLa cells, and vice versa. In the millimolar range, D-Leu and L-Leu have similar uptake and displacement properties with regard to the acid-extractable pool in HeLa cells, despite only the latter isomer being incorporated into protein. Below millimolar concentrations however, a distinct difference was found in the displacement of tritium-labelled L-Leu from the pool by unlabelled D-Leu compared with unlabelled L-Leu. Thus, unlabelled L-Leu in the external medium at 10−4 or 10−5 M displaced an equivalent amount of label from the pool as D-Leu introduced at a concentration approx. one order of magnitude higher, respectively. Reciprocal experiments, in which the acid-extractable pool was preloaded with 3H-D-Leu, confirmed this finding. The chirality difference was noted whether pool prelabelling was carried out at 37 or 0°C; but in order to avoid the complications of active transport mechanisms, the competition work reported here was done at 0°C. Similar chirality differences were observed with other hydrophobic amino acids, including His, Ile and Phe, such as, preferential displacement by the L-Leu racemer compared with the D-Leu racemer below mM levels. This was also true for the D and L forms of the non-utilisable isomer of Leu, norleucine (nLeu). We conclude that D-forms of hydrophobic amino acids have lower affinity for similar or the same intracellular binding sites involved in the acid-extractable pool than their L-forms. The significance of these chirality findings to amino acid pools in cells, and to the predominance of L-forms of amino acids in the biosphere is considered.  相似文献   

19.
Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.  相似文献   

20.
alpha-Aminoisobutyric acid (Aib), one of the Calpha,alpha-disubstituted glycines, is a sterically hindered amino acid that acts as a conformational constraint in peptides. However, studies for the application of the ability of Aib to control conformation are quite few. The paper focuses on the molecular recognition ability of acyclic oligopeptides containing Aib. Liquid-liquid extraction of nine kinds of metal ions from aqueous layers to nonpolar organic layers with acyclic tetrapeptides, X-Trp-Xaa2-Gly-Xaa4-NH-Ar (X = H or C6H5CH2OCO (Z), Xaa2 = Aib or Gly, Xaa4 = Leu or Ala, Ar = phenyl or 3,5-dimethylphenyl) was examined using picrate as the anion of ion pairs. The extraction behaviour of the metal ions with the tetrapeptides was investigated in the pH range from 3 to 9. In the case of basic pH regions, Cu(II) and Ag(I) were effectively extracted with Trp-Aib-Gly-Leu-NH-Ar. Pd(II) was specifically extracted with Trp-Aib-Gly-Leu-NH-Ar in acidic pH regions. The extraction percent (%E) of the peptide host, which has a 3,5-dimethylphenyl group, was even larger than that of the host, which has a phenyl group. Moreover, Pd(II) was extracted with a peptide host which has Leu and a 3,5-dimethylphenyl group in the absence of picrate as the anion of ion pairs. The free alpha-amino group, the turn conformation and the hydrophobicity of peptide molecules were important factors for the extraction of the metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号