首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chirality differences in amino acid retention and release from the acid-extractable pool of cultured mammalian cells
Authors:Denys N Wheatley  Joanne Slater  Eleanor M Love  Attila Miseta
Institution:

a Cell Pathology Unit, University Medical School, Foresterhill, Aberdeen, AB25 2ZD, U.K.

b Department of Clinical Chemistry, Medical University of Pécs, H-7624, Pécs, Hungary

Abstract:In previous work, no chiral differences were found between D and L enantiomers of Leu in their ability to displace one another from the acid-extractable pool in mammalian cells. Recent evidence suggested otherwise. Our aim is to examine whether, in physiological range, D-amino acids have an equivalent ability to displace L-amino acids from the acid-extractable pool of HeLa cells, and vice versa. In the millimolar range, D-Leu and L-Leu have similar uptake and displacement properties with regard to the acid-extractable pool in HeLa cells, despite only the latter isomer being incorporated into protein. Below millimolar concentrations however, a distinct difference was found in the displacement of tritium-labelled L-Leu from the pool by unlabelled D-Leu compared with unlabelled L-Leu. Thus, unlabelled L-Leu in the external medium at 10−4 or 10−5 M displaced an equivalent amount of label from the pool as D-Leu introduced at a concentration approx. one order of magnitude higher, respectively. Reciprocal experiments, in which the acid-extractable pool was preloaded with 3H-D-Leu, confirmed this finding. The chirality difference was noted whether pool prelabelling was carried out at 37 or 0°C; but in order to avoid the complications of active transport mechanisms, the competition work reported here was done at 0°C. Similar chirality differences were observed with other hydrophobic amino acids, including His, Ile and Phe, such as, preferential displacement by the L-Leu racemer compared with the D-Leu racemer below mM levels. This was also true for the D and L forms of the non-utilisable isomer of Leu, norleucine (nLeu). We conclude that D-forms of hydrophobic amino acids have lower affinity for similar or the same intracellular binding sites involved in the acid-extractable pool than their L-forms. The significance of these chirality findings to amino acid pools in cells, and to the predominance of L-forms of amino acids in the biosphere is considered.
Keywords:Chirality  Amino acids  Acid-extractable pool  Transport  Displacement  HeLa cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号