首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.  相似文献   

2.
Despite recent progress in sequencing the complete genome of rice (Oryza sativa), the proteome of this species remains poorly understood. To extend our knowledge of the rice proteome, the subcellular compartments, which include plasma membranes (PM), vacuolar membranes (VM), Golgi membranes (GM), mitochondria (MT), and chloroplasts (CP), were purified from rice seedlings and cultured suspension cells. The proteins of each of these compartments were then systematically analyzed using two-dimensional (2D) electrophoresis, mass spectrometry, and Edman sequencing, followed by database searching. In all, 58 of the 464 spots detected by 2D electrophoresis in PM, 43 of the 141 spots in VM, 46 of the 361 spots in GM, 146 in the 672 spots in MT, and 89 of the 252 spots in CP could be identified by this procedure. The characterized proteins were found to be involved in various processes, such as respiration and the citric acid cycle in MT; photosynthesis and ATP synthesis in CP; and antifungal defense and signal systems in the membranes. Edman degradation revealed that 60–98% of N-terminal sequences were blocked, and the ratios of blocked to unblocked proteins in the proteomes of the various subcellular compartments differed. The data on the proteomes of subcellular compartments in rice will be valuable for resolving questions in functional genomics as well as for genome-wide exploration of plant function.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Jürgens  相似文献   

3.
Isolated Xenopus laevis retinas were incubated with 3H-labeled mannose or leucine in the presence or absence of tunicamycin (TM), a selective inhibitor of dolichyl phosphate-dependent protein glycosylation. At a TM concentration of 20 micrograms/ml, the incorporation of [3H]mannose and [3H]leucine into retinal macromolecules was inhibited by approximately 66 and 12-16%, respectively, relative to controls. Cellular uptake of the radiolabeled substrates was not inhibited at this TM concentration. Polyacrylamide gel electrophoresis revealed that TM had little effect on the incorporation of [3H]leucine into the proteins of whole retinas and that labeling of proteins (especially opsin) in isolated rod outer segment (ROS) membranes was negligible. The incorporation of [3H]mannose into proteins of whole retinas and ROS membranes was nearly abolished in the presence of TM. Autoradiograms of control retinas incubated with either [3H]mannose or [3H]leucine exhibited a discrete concentration of silver grains over ROS basal disc membranes. In TM-treated retinas, the extracellular space between rod inner and outer segments was dilated and filled with numerous heterogeneously size vesicles, which were labeled with [3H]leucine but not with [3H]mannose. ROS disc membranes per se were not labeled in the TM-treated retinas. Quantitative light microscopic autoradiography of retinas pulse-labeled with [3H]leucine showed no differences in labeling of rod cellular compartments in the presence or absence of TM as a function of increasing chase time. These results demonstrate that TM can block retinal protein glycosylation and normal disc membrane assembly under conditions where synthesis and intracellular transport of rod cell proteins (e.g., opsin) are not inhibited.  相似文献   

4.
Recent research in proteomics of the higher plant chloroplast has achieved considerable progress and added to our knowledge of lumenal chloroplast proteins. This work shows that chloroplast lumen has its own specific proteome and may comprise as many as 80 proteins. Although the new map of the lumenal proteome provides a great deal of information, it also raises numerous questions because the physiological functions of most of the novel lumenal proteins are unknown. In this Minireview, we summarize the latest discoveries regarding lumenal proteins and present the currently known facts about the lumenal chloroplast proteome of higher plants.  相似文献   

5.
Digging deeper into the plant cell wall proteome   总被引:9,自引:0,他引:9  
The proteome of the plant cell wall/apoplast is less well characterized than those of other subcellular compartments. This largely reflects the many technical challenges involved in extracting and identifying extracellular proteins, many of which resist isolation and identification, and in capturing a population that is both comprehensive and relatively uncontaminated with intracellular proteins. However, a range of disruptive techniques, involving tissue homogenization and subsequent sequential extraction and non-disruptive approaches has been developed. These approaches have been complemented more recently by other genome-scale screens, such as secretion traps that reveal the genes encoding proteins with N-terminal signal peptides that are targeted to the secretory pathway, many of which are subsequently localized in the wall. While the size and complexity of the wall proteome is still unresolved, the combination of experimental tools and computational prediction is rapidly expanding the catalog of known wall-localized proteins, suggesting the unexpected extracellular localization of other polypeptides and providing the basis for further exploration of plant wall structure and function.  相似文献   

6.
Xylem plays a major role in plant development and is considered part of the apoplast. Here, we studied the proteome of Brassica oleracea cv Bartolo and compared it to the plant cell wall proteome of another Brassicaceae, the model plant Arabidopsis thaliana. B. oleracea was chosen because it is technically difficult to harvest enough A. thaliana xylem sap for proteomic analysis. We studied the whole proteome and an N-glycoproteome obtained after Concanavalin A affinity chromatography. Altogether, 189 proteins were identified by LC-MS/MS using Brassica EST and cDNA sequences. A predicted signal peptide was found in 164 proteins suggesting that most proteins of the xylem sap are secreted. Eighty-one proteins were identified in the N-glycoproteome, with 25 of them specific of this fraction, suggesting that they were concentrated during the chromatography step. All the protein families identified in this study were found in the cell wall proteomes. However, proteases and oxido-reductases were more numerous in the xylem sap proteome, whereas enzyme inhibitors were rare. The origin of xylem sap proteins is discussed. All the experimental data including the MS/MS data were made available in the WallProtDB cell wall proteomic database.  相似文献   

7.
8.
叶绿体蛋白质组研究进展   总被引:3,自引:1,他引:2  
亚细胞蛋白质组学是近年来蛋白组学研究中的一个热点。通过细胞器的纯化和亚细胞组分的分离,降低了样品的复杂性,增大了相应蛋白质组分的富集,有利于由此分离获得的蛋白质的序列分析及功能鉴定。叶绿体蛋白质组为植物亚细胞蛋白质组学研究中相对全面的一部分,利用亚细胞分离结合双向电泳技术系统地鉴定叶绿体中蛋白质组分是获取叶绿体蛋白质信息、确定其功能的重要技术手段。本文就近年来植物叶绿体蛋白质组涵盖的叶绿体内、外被膜、叶绿体基质、类囊体膜和类囊体腔蛋白的研究进行综述,以全面认识叶绿体蛋白的组成、特点及其在叶绿体生理生化代谢网络中的作用。  相似文献   

9.
Approximately, one-third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Secreted and membrane proteins that interact with the host play important roles for the pathogenicity of the bacteria and are potential drug targets or components of vaccines. In this present study, subcellular fractionation in combination with membrane enrichment was used to comprehensively analyze the M. tuberculosis proteome. The proteome of the M. tuberculosis cell wall, membrane, cytosol, lysate, and culture filtrate was defined with a high coverage. Exceptional enrichment for membrane proteins was achieved using wheat germ agglutinin (WGA)-affinity two-phase partitioning, a technique that has to date not yet been exploited for the enrichment of mycobacterial membranes. Overall, 1051 M. tuberculosis protein groups including 183 transmembrane proteins have been identified by LC-MS/MS analysis using stringent database search criteria with a minimum of two peptides and an estimated FDR of less than 1%. With many mycobacterial antigens and lipoglycoproteins identified, the results from this study suggest that many of the newly discovered proteins could represent potential candidates mediating host-pathogen interactions. In addition, this data set provides experimental information about protein localization and thus serves as a valuable resource for M. tuberculosis proteome research.  相似文献   

10.
Toll-like receptors (TLRs) are type I transmembrane (TM) proteins indispensable for sensing microbial and viral infection. Despite their conserved primary structures, some TLRs that detect pathogen-derived nucleic acids (TLR3, TLR7, TLR8, and TLR9) are retained in the cytoplasm. The intracellular localization of TLR9 is important for its ability to discriminate self- and non-self DNA, but the mechanism by which it is retained in the cytoplasm is unclear. In the present study, we found that the TM domain of TLR9 directs its intracellular localization. The TM domain of TLR9 also targets CD25, a heterologous type I TM protein, to intracellular compartments that contain TLR9. We also found that TLR9 generally co-localizes with TLR3, although its linker region, not its TM domain, directs intracellular localization of TLR3. These data demonstrate that the TM domain of TLR9 is a critical regulatory element that targets TLR9 to its intracellular location.  相似文献   

11.
The focus of research on signalling in Rhizobium-legume interactions has moved from understanding the structure and synthesis of rhizobially made Nod factors, towards an analysis of how they function in plants. Nod-factor-induced changes in ion fluxes across membranes, followed by establishment of an oscillation of intracellular Ca(2+) concentration, point to the involvement of a receptor-mediated signal transduction pathway. Progress towards the identification of components in this pathway is being made by identifying Nod-factor binding proteins, isolating plant mutants that are defective in signalling and analysing plant responses to Nod factors.  相似文献   

12.
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.  相似文献   

13.
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, beta-sheet motifs and stretches of alpha-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.  相似文献   

14.
Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to approximately 6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3'-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens.  相似文献   

15.
A comparative analysis of 6039 single-pass (bitopic) membrane proteins from six evolutionarily distant organisms was performed based on data from the Membranome database. The observed repertoire of bitopic proteins is significantly enlarged in eukaryotic cells and especially in multicellular organisms due to the diversification of enzymes, emergence of proteins involved in vesicular trafficking, and expansion of receptors, structural, and adhesion proteins. The majority of bitopic proteins in multicellular organisms are located in the plasma membrane (PM) and involved in cell communication. Bitopic proteins from different membranes significantly diverge in terms of their biological functions, size, topology, domain architecture, physical properties of transmembrane (TM) helices and propensity to form homodimers. Most proteins from eukaryotic PM and endoplasmic reticulum (ER) have the N-out topology. The predicted lengths of TM helices and hydrophobic thicknesses, stabilities and hydrophobicities of TM α-helices are the highest for proteins from eukaryotic PM, intermediate for proteins from prokaryotic cells, ER and Golgi apparatus, and lowest for proteins from mitochondria, chloroplasts, and peroxisomes. Tyr and Phe residues accumulate at the cytoplasmic leaflet of PM and at the outer leaflet of membranes of bacteria, Golgi apparatus, and nucleus. The propensity for dimerization increases from unicellular to multicellular eukaryotes, from enzymes to receptors, and from intracellular membrane proteins to PM proteins. More than half of PM proteins form homodimers with a 2:1 ratio of right-handed to left-handed helix packing arrangements. The inverse ratio (1:2) was observed for dimers from the ER, Golgi and vesicles.  相似文献   

16.
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, β-sheet motifs and stretches of α-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.  相似文献   

17.
A defense-inducible maize gene was discovered through global mRNA profiling analysis. Its mRNA expression is induced by pathogens and defense-related conditions in various tissues involving both resistant and susceptible interactions. These include Cochliobolus heterostrophus and Cochliobolus carbonum infection, ultraviolet light treatment, the Les9 disease lesion mimic background, and plant tissues engineered to express flavonoids or the avirulence gene avrRxv. The gene was named Zm-mfs1 after it was found to encode a protein related to the major facilitator superfamily (MFS) of intregral membrane permeases. It is most closely related to the bacterial multidrug efflux protein family, typified by the Escherichia coli TetA, which are proton motive force antiporters that export antimicrobial drugs and other compounds, but which can be also involved in potassium export/proton import or potassium re-uptake. Other related plant gene sequences in maize, rice, and Arabidopsis were identified, three of which are introduced here. Among this new plant MFS subfamily, the characteristic MFS motif in cytoplasmic TM2-TM3 loop, and the antiporter family motif in transmembrane domain TM5 are both conserved, however the TM7 and the cytoplasmic TM8-TM9 loop are divergent from those of the bacterial multidrug transporters. We hypothesize that Zm-Mfs1 is a prototype of a new class of plant defense-related proteins that could be involved in either of three nonexclusive roles: (1) export of antimicrobial compounds produced by plant pathogens; (2) export of plant-generated antimicrobial compounds; and (3) potassium export and/or re-uptake, as can occur in plant defense reactions.  相似文献   

18.
19.
Reumann S 《Proteomics》2011,11(9):1764-1779
In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.  相似文献   

20.
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号