首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Screening of bacteria from different areas of Howz Soltan playa, a hypersaline lake in the central desert zone of Iran, led to the isolation of 231 moderately halophilic bacteria, which were able to grow optimally in media with 5–15% of salt, and 49 extremely halophilic microorganisms that required 20–25% of salt for optimal growth. These isolates produced a great variety of extracellular hydrolytic enzymes. A total of 195, 177, 100, 95, 92, 68, 65, 33, and 28 strains produced lipases, amylases, proteases, inulinases, xylanases, cellulases, pullulanases, DNases, and pectinases, respectively. In comparison with gram-negative bacteria, the gram-positive halophilic rods, showed more hydrolytic activities. Several combined activities were showed by some of these isolates. One strain presented 9 hydrolytic activities, 4 strains presented 8 hydrolytic activities, 10 strains presented 7 hydrolytic activities and 29 strains presented 6 hydrolytic activities. No halophilic isolate without hydrolytic activity has been found in this study. According to their phenotypic characteristics and comparative partial 16S rRNA sequence analysis, the halophilic strains were identified as members of the genera: Salicola, Halovibrio, Halomonas, Oceanobacillus, Thalassobacillus, Halobacillus, Virgibacillus, Gracilibacillus, Salinicoccus, and Piscibacillus. Most lipase and DNase producers were members of the genera Gracilibacillus and Halomonas, respectively, whereas most of the isolates able to produce hydrolytic enzymes such as amylase, protease, cellulose (CMCase) and inulinase, belonged to gram-positive genera, like Gracilibacillus, Thalassobacillus, Virgibacillus, and Halobacillus.  相似文献   

2.
Bacterial screenings from solar saltern in Sfax (Tunisia) lead to the isolation of 40 moderately halophilic bacteria which were able to grow optimally in media with 5–15% of salt. These isolates were phylogenetically characterized using 16S rRNA gene sequencing. Two groups were identified including 36 strains of Gamma-Proteobacteria (90%) and 4 strains of Firmicutes (10%). The Gamma-Proteobacteria group consisted of several subgroups of the Halomonadaceae (52.5%), the Vibrionaceae (15%), the Alteromonadaceae (10%), the Idiomarinaceae (7.5%), and the Alcanivoracaceae (5%). Moreover, three novel species: 183ZD08, 191ZA02, and 191ZA09 were found, show <97% sequence similarity of the 16S rRNA sequences while compared to previously published cultivated species. Most of these strains (70%) were able to produce hydrolases: amylases, proteases, phosphatases, and DNAases. Over the isolates, 60% produced phosphatases, 15.0% proteases, 12.5% amylases and DNAases equally. This study showed that the solar saltern of Sfax is an optimal environment for halophilic bacterial growth, where diverse viable bacterial communities are available and may have many industrial applications.  相似文献   

3.
Extracellular hydrolytic enzymes such as amylases, proteases, lipases and DNases have quite diverse potential usages in different areas such as food industry, biomedical sciences and chemical industries, also it would be of great importance to have available enzymes showing optimal activities at different values of salt concentrations and temperature. Halophiles are the most likely source of such enzymes, because not only their enzymes are salt-tolerant, but many are also thermotolerant. The purpose of this study was isolation of hydrolytic extracellular enzyme producing halophilic bacteria from water and sediment of the Persian Gulf. Isolated bacteria from water and sediment were inoculated in media with concentration of 0–20% NaCl to determine the optimum salt concentration for growth, isolates were also inoculated in 4 types of solid medium containing substrates of 3 extracellular hydrolytic enzymes including amylase, Protease and Lipase, to determine the quantitative detection of enzyme production, selected strains after more accurate physiological and biochemical studies were identified regarding phylogeny and molecular characteristics using 16S rRNA technique. Isolated enzyme producing bacteria belong to Pseudoalteromonas genera.  相似文献   

4.
In order to explore the diversity of extreme halophiles able to produce different hydrolytic enzymes (amylase, protease, lipase and DNAse) in hypersaline habitats of South Spain, a screening program was performed. A total of 43 extreme halophiles showing hydrolytic activities have been isolated and characterized. The isolated strains were able to grow optimally in media with 15–20% (w/v) total salts and in most cases, growth was detected up to 30% (w/v) total salts. Most hydrolase producers were assigned to the family Halobacteriaceae , belonging to the genera Halorubrum (22 strains), Haloarcula (nine strains) and Halobacterium (nine strains), and three isolates were characterized as extremely halophilic bacteria (genera Salicola, Salinibacter and Pseudomonas ). An extremely halophilic isolate, strain IC10, showing lipase and protease activities and identified as a Salicola strain of potential biotechnological interest, was further studied. The optimum growth conditions for this strain were 15–20% (w/v) NaCl, pH 8.0, and 37 °C. Zymographic analysis of strain IC10 detected the lipolytic activity in the intracellular fraction, showing the highest activity against p -nitrophenyl-butyrate as a substrate in a colorimetric assay, whereas the proteolytic activity was detected in the extracellular fraction. This protease degraded casein, gelatin, bovine serum albumin and egg albumin.  相似文献   

5.
AIMS: Psychrotrophic Gram-negative bacteria, such as Pseudomonas species, pose a significant spoilage problem in refrigerated meat and dairy products due to secretion of hydrolytic enzymes, especially lipases and proteases. This study characterized the enzymes produced by strains of Pseudomonas fluorescens isolated from pasteurized milk. METHODS AND RESULTS: Thirty-seven isolates of Ps. fluorescens from skimmed, semiskimmed and whole milk were all shown to be proteolytic and lipolytic on casein and tributyrin agar, respectively. The highest level of protease production by one isolate, SMD 31, from skimmed milk was in minimal salts medium containing 1 mmol x l(-1) calcium chloride at 20 degrees C. The proteases belonged to the class of metallo-proteases, as there was no residual activity with 10 mmol x l(-1) EDTA. They were heat stable and retained activity even after treatment at 121 degrees C for 20 min. One protease of 45-48 kDa was detected in unconcentrated supernatant fluid samples but, in three isolates from different milk sources, five proteases with molecular masses between 28 and 48 kDa were detected on a 12% zymogram casein gel following ultrafiltration. Attempts to purify the lipases proved unsuccessful. CONCLUSIONS: The characteristics of the major protease of 45-48 kDa correspond to those of proteases described for other Pseudomonas species isolated from a range of environments. However, the smaller proteases have not been described previously. SIGNIFICANCE AND IMPACT OF THE STUDY: In the absence of ultrafiltration the presence of the minor protease species may be missed and they may act as contaminants of the major protease in unpurified or semipurified samples.  相似文献   

6.
This research is a comparative study on the diversity of halophilic bacteria with hydrolytic activities in three significant hypersaline lakes; Urmia in the northwest and Howz-Soltan and Aran-Bidgol in the central desert in Iran. Isolated strains from these saline lakes were found to be halotolerant, moderately and extremely halophilic bacteria. The bacteria in each saline lake were able to produce different hydrolytic enzymes including amylase, protease, lipase, DNase, inulinase, xylanase, carboxy methyl cellulase, pectinase and pullulanase. 188, 302, 91 halophilic strains were isolated from Urmia Lake, Howz-Soltan and Aran-Bidgol playa, respectively. The numbers of Gram-positive strains were more than Gram-negatives, and among Gram-positive bacteria; spore-forming bacilli were most abundant. Due to the unique physico-chemical conditions of the lake environments, the hydrolytic activities of isolated strains were significantly different. For instance, isolated strains from Howz-Soltan playa did not produce pectinase, DNase, amylase, lipase and inulinase, while the isolates from Aran-Bidgol playa had a great ability to produce pectinase and DNase. The strains from Urmia Lake were also good producers of DNase but failed to show any chitinase activity. The diversity of halophilic bacteria from the mentioned three saline lakes was also determined using PCR-amplified 16S rRNA followed by phylogenetic analysis of the partial 16S rRNA sequences.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0481-9) contains supplementary material, which is available to authorized users.  相似文献   

7.
Iran has many hypersaline environments, both the permanent and seasonal ones. One of the seasonal hypersaline lakes in the central desert zone is Aran-Bidgol Lake in which microbial diversity has not been characterized, thus the potential usage of this microbial community in biotechnology remained unknown. In this study, screening the halophilic hydrolytic enzyme-producing bacteria from different areas of this lake led to isolation of 61 gram-positive and 22 gram-negative moderately halophilic bacteria. These bacterial isolates were shown to produce a wide variety of hydrolytic enzymes including DNase, inulinase, amylase, lipase, pectinase, protease, chitinase, pullulanase, cellulase, and xylanase. The most common enzymes were DNase and inulinase in gram-positive bacteria, lipase in gram-negative bacteria, and pullulanase and cellulase in gram-positive cocci. Interestingly, combined hydrolytic activates were observed in some isolates. According to their phenotypic characteristics and comparative partial 16S rRNA sequence analysis, the moderately halophilic strains belonged to the genera Halobacillus, Thalassobacillus, Bacillus, Salinicoccus, Idiomarina, Salicola, and Halomonas.  相似文献   

8.
The halophilic Archaea are a group of microorganisms that have not been extensively considered for biotechnological applications. This review describes some of the enzymes and products and the potential applications of this unique group of microorganisms to various industrial processes. Specifically, the characteristics of the glycosyl hydrolases, lipases and esterases, proteases, biopolymers and surfactants, as well as some miscellaneous other activities will be described.  相似文献   

9.
Marine environments are substantially untapped source for the isolation of bacteria with the capacity to produce various extracellular hydrolytic enzymes, which have important ecological roles and promising biotechnological applications. Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. A number of marine hydrolases have been described, including amylases, lipases and proteases, which are being used extensively for biotechnological applications. The present study was carried out to isolate marine bacteria from continental slope sediments of the eastern Arabian Sea and explore their biotechnological potential. Among the 119 isolates screened, producers of amylases (15%), caseinases (40%), cellulases (40%), gelatinases (60%), lipases (26%), ligninases (33%), phytase (11%) and Malachite Green dye degraders (16%) were detected. Phylogenetic analysis based on 16S rRNA gene sequencing showed that predominant marine sediment bacteria possessing more than four enzymatic activities belonged to the phyla Firmicutes and Proteobacteria, was assigned to the genera Bacillus, Planococcus, Staphylococcus, Chryseomicrobium, Exiguobacterium and Halomonas. Biodegradation of the dye Malachite Green using the liquid decolorization assay showed that both the individual cultures (Bacillus vietnamensis, Planococcus maritimus and Bacillus pumilus) and their consortium were able to decolorize more than 70% of dye within 24?h of incubation. This is the first report on diversity and extracellular hydrolytic enzymatic activities and bioremediation properties of bacteria from continental slope sediment of eastern Arabian Sea.  相似文献   

10.
巴里坤湖和玛纳斯湖嗜盐菌的分离及功能酶的筛选   总被引:1,自引:0,他引:1  
顾晓颖  李冠  吴敏 《生物技术》2007,17(3):26-30
目的:了解新疆巴里坤湖与马纳斯湖中嗜盐菌及功能酶的多样性。方法:从两湖中采集水样进行菌种分离,采用PCR方法扩增出其16S rRNA基因(16S rDNA),并测定了基因的序列。对分离菌株进行了蛋白酶、淀粉酶、酯酶、脂肪酶、以及纤维素酶的筛选。结果:从两湖水样共分离得到51株嗜盐菌。基于16SrDNA序列的同源性比较和系统发育学分析,发现从两湖分离获得的中度嗜盐菌分别属于Planococcaceae、Bacillacea、Staphylococcus、Halomonadaceae、Salicolaceae以及Pseudomonadacaeae 6个属。分离得到的极端嗜盐古菌属于Halobacteriaceae属。功能酶筛选结果表明产蛋白酶的嗜盐菌共有15株,产酯酶的共有23株,产淀粉酶的共有8株,未获得产脂肪酶和纤维素酶的嗜盐菌。结论:新疆巴里坤湖和马纳斯湖中有丰富的嗜盐微生物资源及酶资源,有重要的研究意义和应用前景。  相似文献   

11.
Profiling serine hydrolase activities in complex proteomes   总被引:10,自引:0,他引:10  
Kidd D  Liu Y  Cravatt BF 《Biochemistry》2001,40(13):4005-4015
Serine hydrolases represent one of the largest and most diverse families of enzymes in higher eukaryotes, comprising numerous proteases, lipases, esterases, and amidases. The activities of many serine hydrolases are tightly regulated by posttranslational mechanisms, limiting the suitability of standard genomics and proteomics methods for the functional characterization of these enzymes. To facilitate the global analysis of serine hydrolase activities in complex proteomes, a biotinylated fluorophosphonate (FP-biotin) was recently synthesized and shown to serve as an activity-based probe for several members of this enzyme family. However, the extent to which FP-biotin reacts with the complete repertoire of active serine hydrolases present in a given proteome remains largely unexplored. Herein, we describe the synthesis and utility of a variant of FP-biotin in which the agent's hydrophobic alkyl chain linker was replaced by a more hydrophilic poly(ethylene glycol) moiety (FP-peg-biotin). When incubated with both soluble and membrane proteomes for extended reaction times, FP-biotin and FP-peg-biotin generated similar "maximal coverage" serine hydrolase activity profiles. However, kinetic analyses revealed that several serine hydrolases reacted at different rates with each FP agent. These rate differences were exploited in studies that used the biotinylated FPs to examine the target selectivity of reversible serine hydrolase inhibitors directly in complex proteomes. Finally, a general method for the avidin-based affinity isolation of FP-biotinylated proteins was developed, permitting the rapid and simultaneous identification of multiple serine peptidases, lipases, and esterases. Collectively, these studies demonstrate that chemical probes such as the biotinylated FPs can greatly accelerate both the functional characterization and molecular identification of active enzymes in complex proteomes.  相似文献   

12.
AIMS: To develop an efficient approach using a combination of phenotypic and genotypic methods for isolation of environmental bacteria that produce mid-chain-length polyhydroxyalkanoates (mcl-PHAs). METHODS AND RESULTS: A viable-colony staining method using Nile red was used to screen for PHA-producing bacteria followed by a polymerase chain reaction (PCR) screen using primers to amplify the partial nucleic acid sequence of the phaC1 synthase gene for confirmation. Microbes containing lipophilic storage compounds isolated from environmental samples could readily be detected by the colony staining method. They were further examined by Sudan Black staining to highlight the inclusions inside the cells. These isolates were subsequently subjected to PCR analysis. As a result, more than a hundred strains were identified as PHA-positive isolates from this screening approach. CONCLUSIONS: These results conclusively demonstrate that environmental bacterial strains able to accumulate the PHAs could readily be obtained by this screening method. SIGNIFICANCE AND IMPACT OF THE STUDY: We propose a polyphasic approach using a combination of phenotypic and genotypic screening method to rapidly screen and identify bacteria able to produce significant amounts of mcl-PHAs from environment. This approach can be adopted as a rapid screen for micro-organisms able to accumulate PHAs to be used for potential manufacture and other industrial applications.  相似文献   

13.
We developed versatile low-cost arrays of sol-gel-encapsulated enzymes (referred to as solzymes) suitable for repeated assays of bioactivity or enzyme inhibition. Sol-gel microstructures containing active enzymes were stabilized on glass at moderate pH and room temperature without harsh calcination. A multi-well bilayer of polydimethylsiloxane was used to support the solzyme array and contain the reaction medium. Each of the 147 microwells has a working volume of 5 muL and contains 50 mug of immobilized enzyme. The solzyme arrays maintained high activity through repeated applications and exhibited superior thermostability compared to soluble enzymes. Among the enzymes used were lipases, glucose oxidase, and horseradish peroxidase. Twenty different lipases and proteases were also used to prepare a hydrolase array, for which bromthymol blue served as a generic indicator of activity. The relative activities of the encapsulated hydrolases correlated closely with those of the soluble hydrolases, illustrating that sol-gel encapsulation preserved the hierarchy of enzyme activity. The development of solzyme arrays paves the way to higher throughput screening of diverse proteins and enzymes, including those that are available only in trace amounts.  相似文献   

14.
Tomato is one of the leading crops in Tunisia in terms of weight consumed (20 kg/per person/year). Preserving the quality of the fruit from field to consumer is essential to successful marketing. Grey mould rot induced by Botrytis cinerea is an important cause of postharvest loss depending on season and handling practices. We describe here the ability of halotolerant to moderately halophilic bacteria isolated from different Tunisian Sebkhas (hypersaline soils) to protect fresh‐market tomato fruits from B. cinerea. The tomatoes tested were at two different stages of ripening, (i) mature‐green and (ii) red. Six strains significantly reduced growth of the pathogens from 67% to 87%. The effectiveness of these antagonists was also confirmed on green tomatoes; in which the fruit rot protection rate ranged from 74% to 100%. The antagonists were characterized by morphological, biochemical and physiological tests as well as 16S rDNA sequencing. The halotolerant effective isolates were identified as belonging to one of the species Bacillus subtilis (M1‐20, J9) or B. licheniformis (J24). One effective moderately halophilic isolate (M2‐26) was identified as Planococcus rifietoensis. These strains are a source of hydrolytic enzymes such as chitinases, proteases, laminarinases, amylases, lipases and cellulases. For comparison, 12 halotolerant or moderately halophilic strains obtained from DSM culture collection were also evaluated for their antifungal activity against B. cinerea on tomato fruits. The most effective strains were Halomonas subglaciescola, Halobacillus litoralis, Marinococcus halophilus, Salinococcus roseus, Halovibrio variabilis and Halobacillus halophilus with a percentage of grey mould rot reduction ranging from 71% to 97%. Inoculation of mature‐green tomatoes by the bacterial antagonist of Halobacillus trueperi resulted in no disease development. Our results indicate that the use of halotolerant to halophilic micro‐organisms should be helpful in reducing grey mould disease of stored tomatoes.  相似文献   

15.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

16.
Some bacterial strains isolated from the plant rhizosphere showed high root-colonizing ability and antiphytopathogenic activity against 6 fungal species. The antifungal activity was species-specific, which could be accounted for by the fact that the isolates differed in the ability to produce lytic enzymes (chitinases, proteases, and lipases) and to secrete cyanide. The possibility of using there rhizobacteria to control phytopathogens is discussed.  相似文献   

17.
Some bacterial strains isolated from the plant rhizosphere showed high root-colonizing ability and antiphytopathogenic activity against 6 fungal species. The antifungal activity was species-specific, which could be accounted for by the fact that the isolates differed in the ability to produce lytic enzymes (chitinases, proteases, and lipases) and to secrete cyanide. The possibility of using there rhizobacteria to control phytopathogens is discussed.  相似文献   

18.
四川冬菜中细菌群落组成及多样性   总被引:1,自引:0,他引:1  
【目的】了解腌制4年的四川南充冬菜中细菌群落组成及多样性。【方法】通过16S rDNA多样性分析样品细菌落组成;采用16S rDNA-RFLP方法分析从样品中分离出的纯培养细菌。【结果】16S rDNA多样性分析结果表明,样品中细菌主要属于变形杆菌门(Proteobacteria)和厚壁菌门(Firmicutes),分别占克隆文库的87.9%、7.1%,其中包括Virgibacillus kekensis,Marinococcus albus,Salinicoccus sp.,Lactobacillus halophilus和Halomonas等中度嗜盐菌,仅有5%属于放线菌门(Actinobacteria)。通过纯培养方法从冬菜中分离到35株菌,16S rDNA-RFLP分析结果表明,34株属于厚壁菌门(Firmicutes),包括Virgibacillus,Bacillus megaterium和Gracilibacillus saliphilus等中度嗜盐菌,1株属于放线菌门(Actinobacteria)。【结论】冬菜中细菌群落多样性较低,以中度嗜盐菌为主。  相似文献   

19.
20.
《Journal of Asia》2022,25(1):101856
Lipolytic enzymes are an important group of hydrolases that have found immense industrial application in biotechnology. In this study, the ability of gut bacteria isolated from the gut of the Eri silkworm, Samia ricini, to produce lipolytic enzymes was evaluated through qualitative and quantitative assays. The results of lipase screening showed that 28 isolates had lipolytic activity. The results of 16S ribosomal RNA sequencing indicated that the genus Bacillus comprised majority of the lipolytic bacterial isolates (71%) followed by Pseudomonas (15%); whilst Acinetobacter, Enterobacter and Enterococcus comprised 11%. Lipolytic activity was found in bacteria isolates identified from all the three gut compartments of S. ricini larvae with significant activity from isolates extracted from the foregut and midgut. The lipolytic index among the bacterial isolates ranged between 0.63 and 2.81 on Rhodamine B medium, and all isolates exhibited significant lipolytic activity with p-nitrophenyl butyrate (PNPB) with specific activity ranging from 0.52 to 0.82 μmol/min/mg. The effect of pH and temperature showed that lipase activity was optimum at 37 °C and pH 7–9. A phylogenetic relationship of lipase producing gut bacteria indicated high cluster stability for isolates from different stages (>50%) suggesting that the isolates persist across developmental stages of the host. The Eri silkworm is reared for its silk and the knowledge of its gut bacteria with the ability to produce lipases lies in the significance as far as boosting production of this insect via development of probiotics to enhance commercial Eri rearing. In addition, this insect may be a good resource for profiling novel lipolytic microbes for commercial production of lipases as lipases from microbial origin have assumed a great deal of importance as industrial enzymes due to their potential for use in biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号