首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Chemoresistance is a challenge for clinician in management of tongue cancer. Therefore, it is necessary to explore alternative therapeutic methods to overcome drug resistance. miRNAs are endogenous ?22nt RNAs that play important regulatory roles by targeting mRNAs. miR-21, an essential oncogenic molecule, is associated with chemosensitivity of several human cancer cells to anticancer agents. In this study, we investigated the effects and molecular mechanisms of miR-21 in chemosensitivity of tongue squamous cell carcinoma cells (TSCC) to cisplatin. miR-21 expression was detected in tongue cancer tissue using RT-PCR and PDCD4 protein expression was measured using immunohistochemistry. miR-21 and(or) PDCD4 depleted cell lines were generated using miR-21 inhibitor and(or) siRNA. The viabilities of treated cells were analyzed using MTT assay. RT-PCR was used to detect miR-21 expression and immunoblotting was used to detect protein levels. Cell cycle and apoptosis were analyzed using propidium iodide (PI) staining and Annexin V/PI staining, respectively. The expression of miR-21 in tumorous tissue was significantly higher compared with adjacent normal tissue and loss of PDCD4 expression was observed in TSCCs. Transfection of miR-21 inhibitor induced sensitivity of TSCC cells (Tca8113 and CAL-27) to cisplatin. TSCC cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-21 inhibitor using Western blot analysis. In addition, the enhanced growth-inhibitory effect by miR-21 inhibitor was weakened after the addition of PDCD4 siRNA. Suppression of miR-21 or PDCD4 could significantly promote or reduce cisplatin-induced apoptosis, respectively. Our data suggest that miR-21 could modulate chemosensitivity of TSCC cells to cisplatin by targeting PDCD4, and miR-21 may serve as a potential target for TSCC therapy.  相似文献   

2.
3.
4.
5.
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC). In this study, we investigated that the effect of silencing LMP1 on cell cycle distribution and chemosensitivity in EBV-positive nasopharyngeal carcinoma C666-1 cells. Silencing of LMP1 by specific siRNA induced G1 arrest in C666-1 cells. The protein expression of CDK4 and cyclin D1 decreased and P27 was upregulated following LMP1 knockdown. Phosphorylation of AKT and its downstream targets IКB, FKHR was inhibited by LMP1 siRNA. The chemosensitivity of C666-1 cells to bleomycin and cisplatin was enhanced by siRNA targeting LMP1. The cells treated with LMP1 siRNA showed enhanced cleavage of the effector caspase3 and PARP, and Bax had the tendency to exhibit higher expression. Also, co-transfection of constitutive active AKT plasmid with LMP-1 siRNA plasmid abrogates sensitivity of C666-1 to bleomycin and cisplatin. It is reported for the first time that AKT signaling pathway was directly involved in the effects induced by siRNA targeting LMP1. Our findings confirm LMP1 as a rational therapeutic target in NPC.  相似文献   

6.
Chen YR  Liu MT  Chang YT  Wu CC  Hu CY  Chen JY 《Journal of virology》2008,82(16):8124-8137
Latent membrane protein 1 (LMP1), an Epstein-Barr virus (EBV) oncoprotein, mimics a constitutively activated tumor necrosis factor receptor and activates various signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt. LMP1 is essential for EBV-mediated B-cell transformation and is sufficient to transform several cell lines. Cellular transformation has been associated strongly with genomic instability, while DNA repair plays an important role in maintaining genomic stability. Previously, we have shown that LMP1 represses DNA repair by the C-terminal activating region 1 (CTAR1) in human epithelial cells. In the present study, we demonstrate that the PI3K/Akt pathway is required for LMP1-mediated repression of DNA repair. Through the LMP1/PI3K/Akt pathway, FOXO3a, which can induce DNA repair, is inactivated because of phosphorylation and relocalization. Expression of a constitutively active FOXO3a mutant can rescue LMP1-mediated repression of DNA repair. Furthermore, LMP1 can decrease the expression of DNA damage-binding protein 1 (DDB1), which functions in nucleotide excision repair, through the PI3K/Akt/FOXO3a pathway. LMP1-mediated repression of DNA repair is restored by DDB1, although only partially. These results suggest that LMP1 triggers the PI3K/Akt pathway to inactivate FOXO3a and decrease DDB1, which can lead to repression of DNA repair and may contribute to genomic instability in human epithelial cells.  相似文献   

7.
8.
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.  相似文献   

9.
Nasopharyngeal carcinomas (NPC) are etiologically related to the Epstein-Barr virus (EBV), and malignant NPC cells have consistent although heterogeneous expression of the EBV latent membrane protein 1 (LMP1). LMP1 trafficking and signaling require its incorporation into membrane rafts. Conversely, raft environment is likely to modulate LMP1 activity. In order to investigate NPC-specific raft partners of LMP1, rafts derived from the C15 NPC xenograft were submitted to preparative immunoprecipitation of LMP1 combined with mass spectrometry analysis of coimmunoprecipitated proteins. Through this procedure, galectin 9, a beta-galactoside binding lectin and Hodgkin tumor antigen, was identified as a novel LMP1 partner. LMP1 interaction with galectin 9 was confirmed by coimmunoprecipitation and Western blotting in whole-cell extracts of NPC and EBV-transformed B cells (lymphoblastoid cell lines [LCLs]). Using mutant proteins expressed in HeLa cells, LMP1 was shown to bind galectin 9 in a TRAF3-independent manner. Galectin 9 is abundant in NPC biopsies as well as in LCLs, whereas it is absent in Burkitt lymphoma cells. In subsequent experiments, NPC cells were treated with Simvastatin, a drug reported to dissociate LMP1 from membrane rafts in EBV-transformed B cells. We found no significant effects of Simvastatin on the distribution of LMP1 and galectin 9 in NPC cell rafts. However, Simvastatin was highly cytotoxic for NPC cells, regardless of the presence or absence of LMP1. This suggests that Simvastatin is a potentially useful agent for the treatment of NPCs although it has distinct mechanisms of action in NPC and LCL cells.  相似文献   

10.
Epstein—Barr病毒基因组在鼻咽癌组织中转录的特征   总被引:2,自引:0,他引:2  
对EB病毒基因在鼻咽癌活检组织细胞内的转录进行了较系统的探测。实验结果表明,EB病毒基因组在鼻咽癌活检组织中以附加体(Episome)形式存在,而其基因转录有如下特征:(1)EB病毒在所有鼻咽癌组织细胞中都表达EBNA-1,并且此基因转录产物由一个在BamHI-F区的启动子(Fp)驱动;(2)潜伏感染膜蛋白(Latent membrane protein,LMP)和末端蛋白(Terminal pr  相似文献   

11.
Oxidative stress is thought to contribute to cancer development. Epstein–Barr virus (EBV) and its encoded oncoprotein, latent membrane protein 1 (LMP1), are closely associated with the transformation of nasopharyngeal carcinoma (NPC) and Burkitt’s lymphoma (BL). In this study, we used LMP1-transformed NP cells and EBV-related malignant cell lines to assess the effects of LMP1 on reactive oxygen species (ROS) accumulation and glycolytic activity. Using NPC tissue samples and a tissue array to address clinical implications, we report that LMP1 activates NAD(P)H oxidases to generate excessive amount of ROS in EBV-related malignant diseases. By evaluating NAD(P)H oxidase (NOX) subunit expression, we found that the expression of the NAD(P)H oxidase regulatory subunit p22phox was significantly upregulated upon LMP1-induced transformation. Furthermore, this upregulation was mediated by the c-Jun N-terminal kinase (JNK) pathway. In addition, LMP1 markedly stimulated anaerobic glycolytic activity through the PI3K/Akt pathway. Additionally, in both NPC cells and tissue samples, p22phox expression correlated with LMP1 expression. The NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI) also exerted a marked cytotoxic effect in LMP1-transformed and malignant cells, providing a novel strategy for anticancer therapy.  相似文献   

12.
13.
The Epstein-Barr virus (EBV)-encoded LMP1 protein is an important component of the process of transformation by EBV. LMP1 is essential for transformation of B lymphocytes, most likely because of its profound effects on cellular gene expression. Although LMP1 is expressed in the majority of nasopharyngeal carcinoma (NPC) tumors, the effect of LMP1 on cellular gene expression and its contribution to the development of malignancy in epithelial cells is largely unknown. In this study the effects of LMP1 on the expression and tyrosine kinase activity of the epidermal growth factor receptor (EGFR) were investigated in C33A human epithelial cells. Stable or transient expression of LMP1 in C33A cells increased expression of the EGFR at both the protein and mRNA levels. In contrast, expression of the EGFR was not induced by LMP1 in EBV-infected B lymphocytes. Stimulation of LMP1-expressing C33A cells with epidermal growth factor (EGF) caused rapid tyrosine phosphorylation of the EGFR (pp170) as well as several other proteins, including pp120, pp85, pp75, and pp55, indicating that the EGFR induced by LMP1 is functional. LMP1 also induced expression of the A20 gene in C33A epithelial cells. In C33A cells, LMP1 expression increased the proliferative response to EGF, as LMP1-expressing C33A cells continued to increase in number when plated in serum-free media supplemented with EGF, while the neo control cells exhibited very low levels of viability and did not proliferate. Immunoblot analysis of protein extracts from nude mouse-passaged NPC tumors also demonstrated that the EGFR is overexpressed in primary NPC tumors as well as those passaged in nude mice. This study suggests that the alteration in the growth patterns of C33A cells expressing LMP1 is a result of increased proliferative signals due to enhanced EGFR expression, as well as protection from cell death due to LMP1-induced A20 expression. The induction of EGFR and A20 by LMP1 may be an important component of EBV infection in epithelial cells and could contribute to the development of epithelial malignancies such as NPC.  相似文献   

14.
15.
Studies have indicated that dysfunction of autophagy is involved in the initiation and progression of multiple tumors and their chemoradiotherapy. Epstein–Barr virus (EBV) is a lymphotropic human gamma herpes virus that has been implicated in the pathogenesis of nasopharyngeal carcinoma (NPC). EBV encoded latent membrane protein1 (LMP1) exhibits the properties of a classical oncoprotein. In previous studies, we experimentally demonstrated that LMP1 could increase the radioresistance of NPC. However, how LMP1 contributes to the radioresistance in NPC is still not clear. In the present study, we found that LMP1 could enhance autophagy by upregulating the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3). Knockdown of BNIP3 could increase the apoptosis and decrease the radioresistance mediated by protective autophagy in LMP1-positive NPC cells. The data showed that increased BNIP3 expression is mediated by LMP1 through the ERK/HIF1α signaling axis, and LMP1 promotes the binding of BNIP3 to Beclin1 and competitively reduces the binding of Bcl-2 to Beclin1, thus upregulating autophagy. Furthermore, knockdown of BNIP3 can reduce the radioresistance promoted by protective autophagy in vivo. These data clearly indicated that, through BNIP3, LMP1 induced autophagy, which has a crucial role in the protection of LMP1-positive NPC cells against irradiation. It provides a new basis and potential target for elucidating LMP1-mediated radioresistance.Subject terms: Oncogenes, Head and neck cancer  相似文献   

16.
Kaposi's sarcoma (KS) associated herpesvirus (KSHV) is the etiological agent of KS. In vivo, KS is a tumor capable of spreading throughout the body, and pulmonary metastasis is observed clinically. In vitro, KSHV induces the invasiveness of endothelial cells. The KSHV open reading frame K15 is a KSHV-specific gene encoding a transmembrane protein. Two highly divergent forms of K15, the predominant (P) and minor (M) forms (K15P and K15M, respectively), have been identified in different KSHV strains. The two K15 alleles resemble the latent membrane protein 2A (LMP2A) gene of Epstein-Barr virus (EBV) in their genomic locations and protein topology. Also, both K15 proteins have motifs similar to those found in the EBV LMP1 protein. K15 therefore appears to be a hybrid of a distant evolutionary relative of EBV LMP1 and LMP2A. Since both LMP1 and LMP2A proteins are capable of inducing cell motility, we sought to determine whether K15 has similar abilities. In this study, we show that K15M is latently expressed in KSHV-positive PEL cells and knockdown of K15M in PEL cells reduces cell motility. K15M localizes to lysosomal membranes and induces cell migration, invasion, and NF-κB (but not AP-1) activity via its conserved SH2-binding motif. K15M also induces the expression of microRNAs miR-21 and miR-31 via this conserved motif, and knocking down both these microRNAs eliminates K15M-induced cell motility. Therefore, K15M may contribute to KSHV-mediated tumor metastasis and angiogenesis via regulation of miR-21 and miR-31, which we show here for the first time to be a specific regulator of cell migration. In light of these findings, the targeting of K15 or the downstream microRNAs regulated by it may represent novel therapies for treatment of KSHV-associated neoplasia.  相似文献   

17.
High thymidine phosphorylase (TP) expression is significantly correlated with poor prognosis in patients with nasopharyngeal carcinoma (NPC). NPC is an Epstein-Barr Virus (EBV)-associated cancer in which the EBV-encoded oncogene product, latent membrane protein 1 (LMP1), is expressed in approximately 60% of tumor tissues. However, no previous study has examined whether LMP1 is involved in up-regulating TP expression in NPC tissues. We herein show that LMP1 expression is correlated with TP expression in tumor cells, as examined by quantitative RT-PCR and immunohistochemical staining. We further show that the CTAR1 and CTAR2 domains of LMP1 mediate TP induction, as demonstrated by quantitative RT-PCR and Western blot analyses using LMP1 deletion and site-specific mutants. Mechanistically, LMP1-mediated TP induction is abolished by inhibitors of NF-κB and p38 MAPK, dominant-negative IκB and p38, and siRNA-mediated knockdown of p38 MAPK. Clinically, there were significant correlations among the expression levels of TP, activated p65, and phospho-p38 MAPK in NPC biopsy samples. Functionally, LMP1-mediated induction of TP expression enhanced the sensitivity of NPC cells to the chemotherapeutic prodrug, 5'-DFUR. Our results provide new insights into the roles of LMP1-mediated NF-κB and p38 MAPK signaling pathways in TP induction, potentially suggesting new therapeutic strategies for the treatment of NPC.  相似文献   

18.
19.
20.
Liu HD  Zheng H  Li M  Hu DS  Tang M  Cao Y 《Cellular signalling》2007,19(2):419-427
B lymphocytes are generally considered to be the only source of immunoglobulins. However, increasing evidence revealed that some human epithelial cancer cell lines, including nasopharyngeal carcinoma (NPC) cell lines, expressed immunoglobulins. Moreover, we previously found that expression of kappa light chain in NPC cells could be upregulated by EBV-encoded latent membrane protein 1 (LMP1). Here, Western blot and flow cytometric analysis of intracellular kappa staining indicated that upregulation of the expression of kappa was inhibited by using LMP1-targeted DNAzyme and that Bay11-7082 and SP600125, inhibitors of JNK and NF-kappaB, respectively, inhibited LMP1-augmented kappa light chain expression in NPC cells. LMP1-positive NPC cells expressing the dominant-negative mutant of IkappaBalpha (DNMIkappaBalpha) or of c-Jun (TAM67) exhibited significantly decreasing kappa production compared with their parental cells. These results suggest that LMP1 elevated kappa light chain through activation of the NF-kappaB and AP-1 signaling pathways. The present study provided some hints of possible mechanisms by which human cancer cells of epithelial origin produced immunoglobulins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号