首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Tree survival is a critical driver of stand dynamics, influencing forest structure and composition. Many local-scale drivers (tree size, abiotic and biotic factors) have been proposed as being important in explaining patterns of tree survival, but their contributions are still unknown. We examined the relative importance of these local drivers on tree survival using generalized linear mixed models in an old-growth sub-tropical forest in south China at three levels (community, guild, and species). Among the variables tested, tree size was typically the most important driver of tree survival, followed by abiotic and then biotic variables. Tree size has a strongly positive effect on tree survival for small trees (10–30 cm dbh) and shade-tolerant tree species. Of the abiotic factors tested, elevation tended to be more important in affecting tree survival than other topographic variables. Abiotic factors generally influenced survival of species with relatively high abundances, for individuals in smaller size classes and for mid-tolerant species. Among biotic factors, we found that the mortality of tree species was not driven by density- and frequency-dependent effects in this sub-tropical forest, as indicated by the results of both total basal area of neighbors and the proportion of conspecific neighbors in our study. We conclude that the relative importance of variables driving patterns of tree survival varied greatly among tree size classes, species guilds, shade tolerance, density, and abundance classes in this sub-tropical forest. These results also provide critical information for future studies of forest dynamics and offer insight into forest management in this region.  相似文献   

2.
Seedling survival plays an important role in the maintenance of species diversity and forest dynamics. Although substantial gains have been made in understanding the factors driving patterns of seedling survival in forests, few studies have considered the simultaneous contribution of understory light availability and the local biotic neighborhood to seedling survival in temperate forests at different successional stages. Here, we used generalized linear mixed models to assess the relative importance of understory light availability and biotic neighborhood variables on seedling survival in secondary and old-growth temperate forest in north eastern China at two levels (community and guild). At the community level, biotic neighborhood effects on seedling survival were more important than understory light availability in both forests. In both the old-growth and secondary forests, conspecific basal area had a negative effect on seedling survival, consistent with negative conspecific density dependence. At guild levels, the relative importance of light and biotic neighborhood on seedling survival showed considerable variation among guilds in both forests. Available understory light tended to have positive effects on seedling survival for shrub and light-demanding species in the old-growth forest, but negative effects on survival of shade-tolerant seedlings in the secondary forest. For tree species and shade-tolerant species, the best fit models included neighborhood variables, but that was not the case for shrubs, light-demanding, or mid shade-tolerant species. Overall, our results demonstrate that the relative importance of understory light availability and biotic factors on seedling survival vary with species life-history strategy and forest successional stage.  相似文献   

3.
We assessed the short‐term effects of biotic (density, plant size) and abiotic factors (light), on the dynamics of physiognomically different plant groups (palms, tree ferns, lianas, and trees) in a hurricane‐impacted tropical wet montane forest, John Crow Mountains, Jamaica. All plants ≥2 cm (dbh) found within 45, 25 × 25 m permanent sample plots (2.8125 ha), established according to a randomized block design along an elevation gradient, were tagged and measured (dbh) in 2006 and re‐assessed in 2012 after Hurricane Dean (2007). Hemispheric light was measured in 2007 and 2008. Tree and liana size class distributions changed due to high mortality in the smallest size classes and their densities declined; however, palm and tree fern density remained unchanged. The dynamics of trees were only related to tree fern and liana dynamics (e.g., tree mortality was negatively related to liana recruitment etc.). Although pre‐ and posthurricane light was related to palm density and the density of the other plant groups, respectively, there were no significant changes in light. Tree survivorship increased with increasing dbh while posthurricane light and overall density influenced the growth and survivorship of tree species. Species importance value did not change, suggesting that direct regeneration may be the model of forest recovery following this small‐scale disturbance. Over the short term, tree species showed life history trade‐offs that aid species coexistence after this moderate/low disturbance event. Our study highlights that hurricanes with low impacts can have differential short‐ and possibly long‐term effects on different plant groups.  相似文献   

4.
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2?years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ??4?years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.  相似文献   

5.
Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half‐mature forest (HF), a mature forest (MF), and an old‐growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.  相似文献   

6.
Habitat heterogeneity and dispersal limitation are widely considered to be the two major mechanisms in determining tree species distributions. However, few studies have quantified the relative importance of these two mechanisms at different life stages of trees. Moreover, rigorous quantification of the effects of dominant tree species in determining species distributions has seldom been explored. In the present study, we tested the hypothesis that the distribution of tree species is regulated by different mechanisms at different life history stages. In particular, we hypothesised that dispersal limitation regulates the distribution of trees at early life stages and that environmental factors control the distribution of trees as they grow, because of niche differentiation resulting from environmental filtering. To test this, trees in 400‐m2 quadrats in a 20‐ha plot in Xishuangbanna, southwest China were grouped into four classes on the basis of the diameter at breast height (DBH) that roughly represent different stages in the life history of trees. A neighbourhood index was computed to represent a neutral spatial autocorrelation effect. We used both biotic (dominant species) and abiotic (topography and soil) predictor variables to model the distribution of each target species while controlling for spatial autocorrelation within each of the DBH classes. To determine which factors played the largest role in regulating target species distribution, the simulated annealing method was used in model selection based on Akaike information criterion (AIC) values. The results showed that the relative importance of neutral and niche processes in regulating species distribution varied across life stages. The neutral neighbourhood index played the most important role in determining the distributions of small trees (1 cm ≤ DBH ≤ 10 cm), and dominant species, as biotic environmental predictor variables, were the next most important regulators for trees of this size. Environmental predictor variables played the most important role in determining the distributions of large trees (10 cm ≤ DBH). This finding builds on previous research into the relative importance of neutral and niche processes in determining species distributions regardless of life stages or DBH classes.  相似文献   

7.
  1. It is well understood that biotic and abiotic variables influence forest productivity. However, in regard to temperate forests, the relative contributions of the aforementioned drivers to biomass demographic processes (i.e., the growth rates of the survivors and recruits) have not received a great deal of attention. Thus, this study focused on the identification of the relative influencing effects of biotic and abiotic variables in the demographic biomass processes of temperate forests.
  2. This study was conducted in the Changbai Mountain Nature Reserve, in northeastern China. Based on the observational data collected from three 5.2‐hectare forest plots, the annual above‐ground biomass (AGB) increment (productivity) of the surviving trees, recruits, and the total tree community (survivors + recruits) were estimated. Then, the changes in the forest productivity in response to biotic variables (including species diversity, structural diversity, and density variables) along with abiotic variables (including topographic and soil variables) were evaluated using linear mixed‐effect models.
  3. This study determined that the biotic variables regulated the variabilities in productivity. Density variables were the most critical drivers of the annual AGB increments of the surviving trees and total tree community. Structural diversity enhanced the annual AGB increments of the recruits, but diminished the annual AGB increments of the surviving trees and the total tree community. Species diversity and abiotic variables did not have impacts on the productivity in the examined forest plots.
  4. The results highlighted the important roles of forest density and structural diversity in the biomass demographic processes of temperate forests. The surviving and recruit trees were found to respond differently to the biotic variables, which suggested that the asymmetric competition had shaped the productivity dynamics in forests. Therefore, the findings emphasized the need to consider the demographic processes of forest productivity to better understand the functions of forests.
  相似文献   

8.
Seedlings are vulnerable to many biotic and abiotic agents, and studying seedling dynamics helps understand mechanisms of species coexistence. In this study, the relative importance of biotic neighbors and habitat heterogeneity to seedling survival was examined by generalized linear mixed models for 33 species in a spruce‐fir valley forest in northeastern China. The results showed that the relative importance of these factors varied with species and functional groups. Conspecific negative density dependence (CNDD) was important to the survival of Abies nephrolepis and Picea koraiensis seedling, whereas phylogenetic negative density dependence (PNDD) was critical to Pinus koraiensis and Betula platyphylla, as well as functional groups of tree, deciduous, and shade‐intolerant seedlings. For shrubs and Acer ukurunduense, habitat heterogeneity was significant. Despite of the significance of CNDD, PNDD, and habitat heterogeneity on seedling survival, large proportions of the total variance were not accounted for by the studied variables, suggesting the needs to examine the influences of other factors such as pests, diseases, herbivores, forest structure, species functional traits, and microclimatic conditions on seedling survival in the future.  相似文献   

9.
《植物生态学报》2016,40(7):711
Aims Our study aimed to understand the effects and the relative importance of biotic neighborhood and habitat heterogeneity for tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain, north-eastern China.
Methods The generalized mixed linear model was used to examine the relative effects of biotic neighborhood and habitat heterogeneity on seedling survival over two years.
Important findings Our results showed that both biotic neighborhood and habitat heterogeneity had significant effects on the seedling survival at community level. The local environment suitable for the adult growth was also suitable for seedling survival. The soil moisture and soil available nitrogen exhibited significant positive effects on seedling survival. On the other hand, seedling density had significant negative effects on seedling survival due to the individual competition. Particularly, we found significant negative density-dependent effects on seedling survival which was caused by conspecific adult and seedling neighbors. As expected, with the increasing of seedling survival age, the habitat heterogeneity became more important on seedling survival. These results suggest that both local biotic neighborhood and habitat heterogeneity drive seedling survival in this temperate forest, and their relative importance varies with different seedling age classes and species traits.  相似文献   

10.
基于长白山次生针阔混交林样地, 以520个1 m × 1 m幼苗样方中胸径小于1 cm的乔木幼苗为研究对象, 选取2013年和2014年的幼苗调查数据, 运用广义线性混合模型(GLMM)分析了生物邻体和生境异质性对幼苗存活的影响, 探讨了次生针阔混交林幼苗存活影响因素及物种共存机制。结果表明: (1)适宜大树生长的局域生境同样也适宜幼苗的存活, 幼苗存活率与土壤含水量和有效氮等土壤养分显著正相关。(2)幼苗个体之间存在明显的竞争, 较多的幼苗邻体显著降低幼苗的存活率。同种大树邻体和同种幼苗邻体与幼苗存活显著负相关, 表明存在负密度制约效应。(3)随着幼苗年龄的增加, 生境异质性对幼苗存活的影响逐渐增大。该研究证实了密度制约效应和生境异质性对幼苗存活有着重要影响, 其相对重要性随着幼苗年龄级、功能群以及物种种类而变化。  相似文献   

11.
Aims Seedlings are vulnerable to many kinds of fatal abiotic and biotic agents, and examining the causes of seedling dynamics can help understand mechanisms of species coexistence. To disentangle the relative importance of neighborhood densities, habitat factors and phylogenetic relatedness on focal seedling survival, we monitored the survival of 5306 seedlings of 104 species>15 months. We address the following questions: (i) How do neighborhood densities, habitat variables and phylogenetic relatedness affect seedling survival? What is the relative importance of conspecific densities, habitat variables and phylogenetic relatedness to seedling survival? (ii) Does the importance of the neighborhood densities, habitat variables and phylogenetic relatedness vary among growth forms, leaf habits or dispersal modes? Specially, does the conspecific negative density dependence inhibit tree and deciduous seedlings more compared with shrub and evergreen species? Does density dependence affect the wind and animal-dispersed species equally?Methods We established 135 census stations to monitor seedling dynamics in a 25-ha subtropical forest plot in central China. Conspecific and heterospecific seedling density in the 1-m 2 seedling plot and adult basal area within a 20-m radius provided neighborhood density variables. Mean elevation, convexity and aspect of every 5- × 5-m grid with seedling plots were used to quantify habitat characteristics. We calculated the relative average phylodiversity between focal seedling and heterospecific neighbors to quantify the species relatedness in the neighborhood. Eight candidate generalized linear mixed models with binominal error distribution were used to compare the relative importance of these variables to seedling survival. Akaike's information criteria were used to identify the most parsimonious models.Important findings At the community level, both the neighborhood densities and phylogenetic relatedness were important to seedling survival. We found negative effects of increasing conspecific seedlings, which suggested the existence of species-specific density-dependent mortality. Phylodiversity of heterospecific neighbors was negatively related to survival of focal seedlings, indicating similar habitat preference shared among phylogenetically closely related species may drive seedling survival. The relative importance of neighborhood densities, habitat variables and phylogenetic relatedness varied among ecological guilds. Conspecific densities had significant negative effect for deciduous and wind-dispersed species, and marginally significant for tree seedlings>10cm tall and animal-dispersed species. Habitat variables had limited effects on seedling survival, and only elevation was related to the survival of evergreen species in the best-fit model. We conclude that both negative density-dependent mortality and habitat preference reflected by the phylogenetic relatedness shape the species coexistence at seedling stage in this forest.  相似文献   

12.
Standing dead trees (or snags) are an important component of forest ecosystems, especially for tree cavity‐nesting vertebrate species, but their prevalence in South African forests remains under studied. Consequently, we investigated forest structure, and the presence and abundance of snags in six southern mistbelt forests in the Eastern Cape, South Africa. These forests have had varying levels of timber extraction over the past 150 years or more. We found snags were relatively rare in all six forests (<4.3% of trees sampled). Mean diameter at breast height (dbh) of snags ranged from 52 to 82 cm across the forests, with smaller snags in Kologha Forest and larger snags in Tyume Forest. A bimodal distribution of snag successional stages was found, with frequencies peaking at early and late stages, and few in the intermediate stages. Tree species diversity in the forests was relatively low (twelve–nineteen species across forests; only 28 species in total). There was no significant difference in dbh of trees between forests, with most occurring in the 20–29‐cm dbh size class. Future studies are required to identify trees that most likely support suitable cavities for tree cavity‐nesting bird species, and to determine cavity‐nester assemblage requirements in southern African forests.  相似文献   

13.
Forest stratification plays a crucial role in the interception of light and plants' photosynthetic activities. However, there is still a lack of information on the contribution of tropical forest stratification to its functioning, despite the increasing number of studies. Here, we analysed from a perspective of the whole tree community (WTC) and forest strata (i.e., large trees, understory trees, and small stems), the relationship between abiotic, biotic factors and aboveground Carbon (AGC). The abiotic factors-AGC relationships were positive for all strata and WTC. However, soil factors-AGC relationship was stronger for small stems and understorey, while topography factor-AGC relationship was stronger for large trees and WTC. Tree size inequality-AGC relationship was positive and much stronger for WTC, large trees and small stems. In addition, a species diversity-AGC relationship was found positive only for large trees and WTC. These results highlight the niche complementarity effect for driving positive relationships of species diversity and individual tree size variation with aboveground biomass at large tree strata and WTC. The lack of positive effect of species diversity on AGC for understorey and small stems strata might be attributable to the selection effect or resource complementarity among species.  相似文献   

14.
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross‐continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf‐chewing and leaf‐mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter‐guild competition and top‐down regulation of herbivores by predators. Inter‐guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom‐up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.  相似文献   

15.
? Premise of the study: Reproductive output varies considerably among individuals within plant populations, and this is especially so in cone production of conifers. While this variation can have substantial effects on populations, little is known about its magnitude or causes. ? Methods: We studied variation in cone production for 2 years within a population of Pinus palustris Mill. (longleaf pine; Pinaceae). Using hurdle models, we evaluated the importance of burn treatments, tree size (dbh), canopy status (open, dominant, subordinate), and number of conspecific neighbors within 4 m (N(4)). ? Key results: Cone production of individuals-even after accounting for other variables-was strongly correlated between years. Trees in plots burned every 1, 2, or 5 years produced more cones than those burned every 7 years, or unburned. Larger trees tend to produce more cones, but the large effects of the other factors studied caused substantial scatter in the dbh-cone number relationship. Among trees in the open, dbh had little explanatory power. Subordinate trees with three neighbors produced no cones. ? Conclusions: Tree size alone was a weak predictor of cone production. Interactions with neighbors play an important role in generating reproductive heterogeneity, and must be accounted for when relating cone production to size. The strong between-year correlation, together with the large variance in cone production among trees without neighbors, suggests that still more of the variance may be explainable, but requires factors outside of our study.  相似文献   

16.
Negative density dependence contributes to seedling dynamics in forested ecosystems, but the relative importance of this factor for different woody plant life‐forms is not well‐understood. We used 1 yr of seedling survivorship data for woody seedlings in 17 different plots of lower to mid‐montane rain forests on the island of Dominica to examine how seedling height, abiotic factors, and biotic factors such as negative density dependence are related to seedling survival of five different life‐forms (canopy, midstory, and understory trees; shrubs; and lianas). Across 64 species, taller seedlings in seedling plots with higher canopy openness, greater seedling density, lower relative abundance of conspecific seedlings, and lower relative abundance of conspecific adults generally had a greater probability of surviving. Height was the strongest predictor of seedling survival for all life‐forms except lianas. Greater seedling density was positively related to survival for canopy and midstory trees but negatively related to survival for the other life‐forms. For trees, the relative abundance of conspecific seedling and adult neighbors had weak and strong negative effects on survival respectively. Neither shrub nor liana seedling survival was affected by the relative abundance of conspecific neighbors. Thus, negative density dependence is confirmed as an important structuring mechanism for tree seedling communities but does not seem to be important for lianas and shrubs in Dominican rain forests. These results represent the first direct assessment of controls on seedling survival of all woody life‐forms – an important step in understanding the dynamics and structure of the entire woody plant community.  相似文献   

17.
Lianas are woody vines that play an important role in forest dynamics in tropical and subtropical areas. Their relationship to various biotic and abiotic conditions is, however, not yet wholly clear. We explored how the size, climbing mechanisms, diversity and abundance of woody lianas is related to host plant size, environmental factors and topography. Liana assemblages were examined in twenty 20 × 20 m plots in each of three topographic sites (valley, slope and ridge) in a subtropical secondary forest in southeastern Taiwan. The valley site had the highest abundance and species richness of lianas. The abiotic factors, soil pH and rock cover, were related to different topographic sites. Larger lianas were always found on larger host trees, while smaller lianas were found in smaller trees; no lianas with a DBH greater than 10 cm were found. Significantly more adhesive lianas were found on larger trees whereas twining and leaning-hook lianas were found in smaller trees. In conclusion, this study demonstrates that the species of liana is associated with the size and type of tree growing under different topographic conditions.  相似文献   

18.
Africa has been called the ‘odd man out’ because the hectare‐scale tree diversity of African equatorial forests is lower than that of forests in other parts of the tropics. Low diversity has been attributed to the smaller area of the African forest and a history of drought, fire and contraction. Several facts shed doubt on this interpretation. The current area of the central African forest is roughly 2 million km2. Even during periods of Pleistocene contraction, numerous moist refugia remained, including 6 posited for Gabon, a country the size of the U. S. state of Colorado. The gamma‐diversity of Gabon is high, implying higher alpha diversities. Finally, tree diversities on small islands in the Solomons and Fiji archipelagos are twice those prevalent in Gabonese forests, suggesting that historical contractions may not have been sufficient to reduce diversity to its current level. To place the African situation in perspective, we compared tree stands in Gabon and the Peruvian Amazon. Peruvian forests contained a mean of 618 trees ≥ 10 cm dbh per ha vs 377 for Gabon, or 64% more. Peruvian forests contained relatively more small trees (≥ 10, <20 cm dbh) and many fewer large trees (≥ 20 cm dbh) than Gabonese forests. These structural differences were consistent across 10 Gabonese and 10 Peruvian sites and transcended local gradients in climate and geology, suggesting that they are intrinsic to the two continents. Tree species diversity in Perú is concentrated in the small tree class (≥ 10, <20 cm dbh), whereas it is highest in the larger tree classes in Gabon. Alpha diversity is apparently lower relative to gamma diversity in Africa than it is in Amazonian Perú , implying higher beta diversity. The densities of small plants (<1 m tall) are similar in Gabonese and Peruvian forests; the observed structural differences develop later at the sapling and small tree stages. Explaining the low hectare‐scale diversity of African forests thus reduces to understanding why the density and diversity of small trees is so anomalously low.  相似文献   

19.
Nucleation is a successional process in which extant vegetation facilitates seed dispersal and recruitment of other individuals and species around focal points in the landscape, leading to ecosystem recovery. This is an important process in disturbed sites where regeneration is limited by abiotic conditions or restrictive seed dispersal. We investigated forest recovery in a large burned area of evergreen temperate rainforest in southern Chile subjected to seasonal soil waterlogging, and assessed the relevance of nucleation processes in overcoming biotic and physical barriers for tree species regeneration. We measured richness and abundance of woody species in relation to patch size, as well as abiotic factors such as light and soil moisture within and outside patches. We found higher tree regeneration in existing patches than in open areas. We recorded an increase of patch size over time, associated with the increase in number of individuals and tree species. Soils in open areas were waterlogged, especially in winter, while patches were not. Trees in patches also acted as perches, enhancing bird-mediated seed rain. Seeds of fleshy-fruited tree species arrived first at patches and seedlings were more frequent in smaller, younger patches, while the number of seedlings of trees with wind-dispersed seeds increased in larger, older patches. Our study shows that woody species seem incapable of recruiting in open and waterlogged soils and depend strongly on extant vegetation patches to establish. In this fire-disturbed evergreen temperate forest regeneration occurs via nucleation, where new individuals contribute to a centrifugal kind of patch growth.  相似文献   

20.
Non-native tree invasions occur not only in woodland or forest vegetation, but also into areas with little or no native tree presence. Limiting factors for tree establishment and survival include seasonal or annual drought, low nutrient availability, cold temperature extremes, fire, and other abiotic conditions to which trees are poorly adapted as well as biotic conditions such as herbivory and lack of soil mutualist inoculum. Tree invasions of grasslands and semi-arid riparian areas in particular are now widespread and frequently result in the rapid conversion of these habitats to woodlands or forests. In some cases, these invasions are the result of a change in extrinsic conditions such as climate, fire, and/or grazing that remove what have been previous barriers to tree establishment. However, in other cases, tree species with particular life-history and dispersal traits fill open niches or outcompete native species. Significant examples of tree invasion into treeless areas can be seen with invasions of Pinus species into temperate grasslands and fynbos shrublands, Melaleuca quinquenervia and Triadica sebifera into grassy wetlands, Prosopis and Tamarix species into semi-arid riparian zones, and Acacia and Morella invasions into nutrient-poor shrublands and barrens. The establishment of trees into treeless areas may have strong impacts on ecosystem processes, influencing biogeochemical cycling, carbon sequestration and cycling, and ecohydrology, as well possible edaphic legacies that persist even if trees are removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号