首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
基于长白山次生针阔混交林样地, 以520个1 m × 1 m幼苗样方中胸径小于1 cm的乔木幼苗为研究对象, 选取2013年和2014年的幼苗调查数据, 运用广义线性混合模型(GLMM)分析了生物邻体和生境异质性对幼苗存活的影响, 探讨了次生针阔混交林幼苗存活影响因素及物种共存机制。结果表明: (1)适宜大树生长的局域生境同样也适宜幼苗的存活, 幼苗存活率与土壤含水量和有效氮等土壤养分显著正相关。(2)幼苗个体之间存在明显的竞争, 较多的幼苗邻体显著降低幼苗的存活率。同种大树邻体和同种幼苗邻体与幼苗存活显著负相关, 表明存在负密度制约效应。(3)随着幼苗年龄的增加, 生境异质性对幼苗存活的影响逐渐增大。该研究证实了密度制约效应和生境异质性对幼苗存活有着重要影响, 其相对重要性随着幼苗年龄级、功能群以及物种种类而变化。  相似文献   

2.
《植物生态学报》2018,42(6):653
以吉林蛟河次生针阔混交林42 hm 2固定监测样地中209个幼苗监测站内的乔木幼苗为研究对象, 基于2016和2017年幼苗调查数据, 探究幼苗物种组成、数量动态等特征, 并运用广义线性混合效应模型分析了幼苗密度与生物邻体及其生境因素的相关性。结果表明: (1)该样地内所有幼苗监测站共调查到幼苗4 245株, 分属10科12属18种, 新生幼苗的数量在物种和调查年份间均有明显差异, 其中水曲柳(Fraxinus mandschurica)和紫椴(Tilia amurensis)幼苗表现出大量出生和死亡的动态特征。(2)群落水平上, 幼苗密度与局域同种成体胸高断面积之和、土壤全磷和有效钾等养分含量显著正相关, 适宜大树生长的生境同样适宜幼苗的生长。(3)水曲柳幼苗密度的影响因素与群落水平一致, 红松(Pinus koraiensis)存在明显的生境偏好, 在湿度较小、土壤全磷、有效氮和有效磷含量较低的生境中密度更高。相对于多年生幼苗, 同种成年邻体对当年生幼苗密度影响更加显著。该研究证实了扩散限制和生境过滤共同影响幼苗密度格局, 生物邻体和生境异质性的相对重要性随幼苗物种种类和年龄级变化。  相似文献   

3.
Aims Seedlings are vulnerable to many kinds of fatal abiotic and biotic agents, and examining the causes of seedling dynamics can help understand mechanisms of species coexistence. To disentangle the relative importance of neighborhood densities, habitat factors and phylogenetic relatedness on focal seedling survival, we monitored the survival of 5306 seedlings of 104 species>15 months. We address the following questions: (i) How do neighborhood densities, habitat variables and phylogenetic relatedness affect seedling survival? What is the relative importance of conspecific densities, habitat variables and phylogenetic relatedness to seedling survival? (ii) Does the importance of the neighborhood densities, habitat variables and phylogenetic relatedness vary among growth forms, leaf habits or dispersal modes? Specially, does the conspecific negative density dependence inhibit tree and deciduous seedlings more compared with shrub and evergreen species? Does density dependence affect the wind and animal-dispersed species equally?Methods We established 135 census stations to monitor seedling dynamics in a 25-ha subtropical forest plot in central China. Conspecific and heterospecific seedling density in the 1-m 2 seedling plot and adult basal area within a 20-m radius provided neighborhood density variables. Mean elevation, convexity and aspect of every 5- × 5-m grid with seedling plots were used to quantify habitat characteristics. We calculated the relative average phylodiversity between focal seedling and heterospecific neighbors to quantify the species relatedness in the neighborhood. Eight candidate generalized linear mixed models with binominal error distribution were used to compare the relative importance of these variables to seedling survival. Akaike's information criteria were used to identify the most parsimonious models.Important findings At the community level, both the neighborhood densities and phylogenetic relatedness were important to seedling survival. We found negative effects of increasing conspecific seedlings, which suggested the existence of species-specific density-dependent mortality. Phylodiversity of heterospecific neighbors was negatively related to survival of focal seedlings, indicating similar habitat preference shared among phylogenetically closely related species may drive seedling survival. The relative importance of neighborhood densities, habitat variables and phylogenetic relatedness varied among ecological guilds. Conspecific densities had significant negative effect for deciduous and wind-dispersed species, and marginally significant for tree seedlings>10cm tall and animal-dispersed species. Habitat variables had limited effects on seedling survival, and only elevation was related to the survival of evergreen species in the best-fit model. We conclude that both negative density-dependent mortality and habitat preference reflected by the phylogenetic relatedness shape the species coexistence at seedling stage in this forest.  相似文献   

4.
以长白山原始阔叶红松林样地为平台,以样方中胸径小于1 cm的乔木幼苗为研究对象,基于2018年两次的幼苗调查数据,利用广义线性混合模型分析影响群落乔木幼苗多度的生物邻体和生境因素。结果表明:该样地所有幼苗样方共调查到10064株乔木幼苗,累计17个物种,分属9科9属,水曲柳幼苗多度极高,在乔木树种幼苗中占优势地位;在群落水平,幼苗多度与异种大树效应、草本密度和林冠开阔度呈显著正相关,与草本盖度和土壤含水量呈显著负相关;在物种水平,水曲柳和紫椴幼苗多度的影响因素与群落水平筛选后的结果一致,红松幼苗多度与异种大树效应呈正相关,与同种大树效应及林冠开阔度呈负相关。该研究证实了生物邻体和生境因素共同影响幼苗多度格局,并且生物邻体和生境因素的相对重要性随幼苗物种种类不同而变化。  相似文献   

5.
以吉林蛟河次生针阔混交林42 hm 2固定监测样地中209个幼苗监测站内的乔木幼苗为研究对象, 基于2016和2017年幼苗调查数据, 探究幼苗物种组成、数量动态等特征, 并运用广义线性混合效应模型分析了幼苗密度与生物邻体及其生境因素的相关性。结果表明: (1)该样地内所有幼苗监测站共调查到幼苗4 245株, 分属10科12属18种, 新生幼苗的数量在物种和调查年份间均有明显差异, 其中水曲柳(Fraxinus mandschurica)和紫椴(Tilia amurensis)幼苗表现出大量出生和死亡的动态特征。(2)群落水平上, 幼苗密度与局域同种成体胸高断面积之和、土壤全磷和有效钾等养分含量显著正相关, 适宜大树生长的生境同样适宜幼苗的生长。(3)水曲柳幼苗密度的影响因素与群落水平一致, 红松(Pinus koraiensis)存在明显的生境偏好, 在湿度较小、土壤全磷、有效氮和有效磷含量较低的生境中密度更高。相对于多年生幼苗, 同种成年邻体对当年生幼苗密度影响更加显著。该研究证实了扩散限制和生境过滤共同影响幼苗密度格局, 生物邻体和生境异质性的相对重要性随幼苗物种种类和年龄级变化。  相似文献   

6.
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2?years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ??4?years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.  相似文献   

7.
Seedling survival plays an important role in the maintenance of species diversity and forest dynamics. Although substantial gains have been made in understanding the factors driving patterns of seedling survival in forests, few studies have considered the simultaneous contribution of understory light availability and the local biotic neighborhood to seedling survival in temperate forests at different successional stages. Here, we used generalized linear mixed models to assess the relative importance of understory light availability and biotic neighborhood variables on seedling survival in secondary and old-growth temperate forest in north eastern China at two levels (community and guild). At the community level, biotic neighborhood effects on seedling survival were more important than understory light availability in both forests. In both the old-growth and secondary forests, conspecific basal area had a negative effect on seedling survival, consistent with negative conspecific density dependence. At guild levels, the relative importance of light and biotic neighborhood on seedling survival showed considerable variation among guilds in both forests. Available understory light tended to have positive effects on seedling survival for shrub and light-demanding species in the old-growth forest, but negative effects on survival of shade-tolerant seedlings in the secondary forest. For tree species and shade-tolerant species, the best fit models included neighborhood variables, but that was not the case for shrubs, light-demanding, or mid shade-tolerant species. Overall, our results demonstrate that the relative importance of understory light availability and biotic factors on seedling survival vary with species life-history strategy and forest successional stage.  相似文献   

8.
Seedlings are vulnerable to many biotic and abiotic agents, and studying seedling dynamics helps understand mechanisms of species coexistence. In this study, the relative importance of biotic neighbors and habitat heterogeneity to seedling survival was examined by generalized linear mixed models for 33 species in a spruce‐fir valley forest in northeastern China. The results showed that the relative importance of these factors varied with species and functional groups. Conspecific negative density dependence (CNDD) was important to the survival of Abies nephrolepis and Picea koraiensis seedling, whereas phylogenetic negative density dependence (PNDD) was critical to Pinus koraiensis and Betula platyphylla, as well as functional groups of tree, deciduous, and shade‐intolerant seedlings. For shrubs and Acer ukurunduense, habitat heterogeneity was significant. Despite of the significance of CNDD, PNDD, and habitat heterogeneity on seedling survival, large proportions of the total variance were not accounted for by the studied variables, suggesting the needs to examine the influences of other factors such as pests, diseases, herbivores, forest structure, species functional traits, and microclimatic conditions on seedling survival in the future.  相似文献   

9.
《植物生态学报》2016,40(4):282
Aims
Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi.
Methods
A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression.
Important findings
The total SOC storage in the main forests in Guangxi was 1686.88 Tg, and the mean SOC density was 124.70 Mg·hm-2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil > lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

10.
Wang X  Comita LS  Hao Z  Davies SJ  Ye J  Lin F  Yuan Z 《PloS one》2012,7(2):e29469
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.  相似文献   

11.
幼苗是植物生活史中最脆弱的阶段,对幼苗存活影响因子的分析有助于我们更清楚的了解森林群落的天然更新机制。利用广义线性混合模型(GLMM)对八大公山常绿落叶阔叶混交林中影响幼苗存活的主要生物与非生物因子进行了研究。结果表明:(1)在群落水平上,幼苗存活与生物因子中的同种幼苗密度呈显著负相关,与非生物因子中的冠层开阔度呈显著正相关;(2)从年龄上看,4年生以下龄级的幼苗存活更容易受到同种幼苗密度的影响,与同种幼苗密度呈显著负相关;4年生及其以上的幼苗存活则主要受非生物因子影响;(3)从生活型上看,相对于常绿物种,落叶物种的幼苗存活率更容易受到同种幼苗密度的影响,也与冠层开阔度呈正相关;(4)在物种水平上,生物因子与非生物因子对不同物种幼苗存活率的影响也不相同。其中,宜昌润楠(Machilus ichangensis Rehd.et Wils.)的存活率与冠层开阔度呈正相关;薄叶山矾(Symplocos anomala Brand)幼苗的存活率与同种幼苗密度、异种大树胸高断面积、林冠开阔度、坡向均呈显著负相关,而与异种幼苗密度和海拔呈显著正相关。本研究表明影响幼苗存活的因子是多样的,而且不是随机发生的。在不同水平上影响幼苗存活的因子不同。  相似文献   

12.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

13.
通过对山西灵空山小蛇沟集水区的林下草本层植物群落进行调查和多元分析——TWINSPAN分类、典范对应分析(CCA)与生境、生物因素变量分离, 探讨林分水平上草本层物种分布与环境因子之间的关系。结果如下: 1) TWINSPAN将26个调查样方划分为6种群落类型: 以辽东栎(Quercus wutaishanica)为主的辽东栎-油松(Pinus tabulaeformis)林型、辽东栎杂木林型、辽东栎林型、华北落叶松(Larix principis-rupprechtii)林型、油松林和阔叶油松林型、油松-辽东栎均匀混交林型, 体现了该地区地带性植被类型为暖温带森林的特点。2)群落类型的划分与CCA的结果相吻合, 主要反映了CCA排序第一、二轴的环境梯度, CCA排序轴第一轴突出反映了林分类型与土壤养分梯度, 第二排序轴与坡度、坡位显著相关。Monte Carlo检验结果表明, 林分类型、土壤养分和坡度是影响小蛇沟集水区内林下草本物种分异的最主要的环境因子。3)生境因子与生物因子解释了物种格局变化的42.9%, 其中生境因子占31.8%, 生物因子占7.9%, 生境因子与生物因子交互作用解释部分占3.2%。良好的环境解释反映了调查取样和环境因子选取的合理性。对于50%以上未能被解释的变异部分, 可能归咎于未被选取的因子如干扰或者随机过程。4)在海拔梯度较小的山区, 坡向等小地形因子能较好地指示局部生境的小气候条件, 对林下植物的分布有较好的解释力。  相似文献   

14.
《植物生态学报》2017,41(4):471
Aims Exotic plant invasions are important components of global change, threatening both the stability and function of invaded ecosystems. Shifts in competitive ability of invasive plants versus their native congeners have been documented. Enhanced UV-B radiation and nitrogen (N) deposition might interact with soil biota communities impacting the invasion process of exotic plant species. To understand the potential effects by UV-B and N with soil biota on plant growth would enhance our understanding of the mechanisms in plant invasions in the context of global change.
Methods We conducted a full-factorial pot experiment in the native range (China) of Triadica sebifera invading US to investigate how UV-B radiation, N and soil biota together determined their seedling growth.
Important findings The results showed that UV-B radiation, N and soil sterilization together impacted the growth of T. sebifera seedlings. UV-B radiation induced changes in biomass allocation with larger leaf biomass observed in response to UV-B radiation. In addition, N increased aboveground biomass and decreased root biomass simultaneously. Soil biota imposed positive effects on growth of T. sebifera, and the addition of N amplified these positive effects. The negative effects by UV-B radiation on growth of T. sebifera showed no response to N addition. Plant height, leaf biomass and total biomass of the invasive T. sebifera populations out- performed those of the native ones. In addition, invasive T. sebifera populations weakened the dependence of root/shoot ratio and root biomass on local soil microorganisms than native populations, but enhanced that of leaf area ratio.  相似文献   

15.
《植物生态学报》2016,40(4):395
Aims
This study was conducted to investigate carbon stocks in forest ecosystems of different stand ages in Anhui Province, and to identify the carbon sequestration potential of climax forests controlled by the natural environment conditions.
Methods
Data were collected based on field investigations and simulations were made with the BIOME4 carbon cycle model.
Important findings
Currently, the total forest carbon stocks in Anhui Province amounts to 714.5 Tg C: 402.1 Tg C in vegetation and 312.4 Tg C in soil. Generally, both the total and vegetation carbon density exhibit an increasing trend with the natural growth of forest stands. Soil carbon density increases from young to near mature forests, and then gradually decreases thereafter. Young and middle-aged forests account for 75% of the total forest area in Anhui Province, with potentially an additional 125.4 Tg C to be gained after the young and middle-aged forests reach near mature stage. Results of BIOME4 simulations show that potentially an additional 245.7 Tg C, including 153.7 Tg C in vegetation and 92 Tg C in soil, could be gained if the current forests are transformed into climax forest ecosystems in Anhui Province.  相似文献   

16.
【目的】物种幼苗的存活与各种生物和非生物因素密切相关,研究关键因素对幼苗存活的影响有助于理解群落物种共存的主要作用机制。【方法】以秦岭落叶阔叶林25 hm2固定样地的木本植物幼苗为对象,对11 408棵幼苗的生存动态开展连续5年(2015—2019年)的监测,利用广义线性混合模型(GLMMs)在群落水平上对影响不同年龄阶段幼苗存活的主要生物与非生物因素进行分析。【结果】(1)从群落水平来看,对幼苗存活影响最大的是生物因素,幼苗存活率与同种幼苗邻体密度和同种大树邻体胸高断面积呈显著负相关,与异种幼苗邻体密度呈显著正相关,表明物种在幼苗时期受到强烈的负密度制约效应;(2)从苗龄水平上来看,除了生物因素,影响幼苗存活的主要因素还包括海拔等非生物因素,但非生物因素的影响随着苗龄增大而减小。【结论】影响幼苗存活因素是多样的,其中生物因素的影响更显著,促进秦岭大样地中幼苗共存的主要机制为负密度制约效应。  相似文献   

17.
叶面积指数(LAI)的空间异质性对研究植物的生长状况、分布格局及其对气候变化的响应机制至关重要, 然而关于不同因素对解释LAI空间变异相对贡献率的报道尚少。该研究依托小兴安岭9.12 hm 2 (380 m × 240 m)谷地云冷杉林固定样地, 采用LAI-2200植物冠层分析仪测定了228个小样方(20 m × 20 m)的LAI, 基于地统计学方法分析了LAI的空间异质性; 测定了每个小样方的28个林分因子和10个土壤因子, 利用主轴邻距法(PCNM)量化了空间因子, 并采用方差分解的方法解析了林分、土壤、空间因子及其相互作用对LAI空间变异的相对贡献率。结果表明: LAI在37 m尺度内具有强烈的空间自相关, 且在不同方向上LAI呈现相异的空间格局; 3种因子及其相互作用共同解释了LAI空间变异的50.4%, 其中空间因子的贡献率最大, 单独解释了LAI空间变异的25.5%; 中等树(5 cm <胸径≤ 10 cm)的密度和主要树种(冷杉(Abies nephrolepis)和云杉(Picea spp.))的胸高断面积均与LAI显著正相关, 质量含水率与LAI显著负相关。总体来看, 空间自相关对小兴安岭谷地云冷杉林LAI空间异质性的决定作用明显强于林分因子和土壤因子。  相似文献   

18.
《植物生态学报》2016,40(4):327
Aims
Forest carbon storage in Nei Mongol plays a significant role in national terrestrial carbon budget due to its large area in China. Our objectives were to estimate the carbon storage in the forest ecosystems in Nei Mongol and to quantify its spatial pattern.
Methods
Field survey and sampling were conducted at 137 sites that distributed evenly across the forest types in the study region. At each site, the ecosystem carbon density was estimated thorough sampling and measuring different pools of soil (0-100 cm) and vegetation, including biomass of tree, grass, shrub, and litter. Regional carbon storage was calculated with the estimated carbon density for each forest type.
Important findings
Carbon storage of vegetation layer in forests in Nei Mongol was 787.8 Tg C, with the biomass of tree, litter, herbaceous and shrub accounting for 93.5%, 3.0%, 2.7% and 0.8%, respectively. Carbon density of vegetation layer was 40.4 t·hm-2, with 35.6 t·hm-2 in trees, 2.9 t·hm-2 in litter, 1.2 t·hm-2 in herbaceous and 0.6 t·hm-2 in shrubs. In comparison, carbon storage of soil layer in forests in Nei Mongol was 2449.6 Tg C, with 79.8% distributed in the first 30 cm. Carbon density of soil layer was 144.4 t·hm-2. Carbon storage of forest ecosystem in Nei Mongol was 3237.4 Tg C, with vegetation and soil accounting for 24.3% and 75.7%, respectively. Carbon density of forest ecosystems in Nei Mongol was 184.5 t·hm-2. Carbon density of soil layer was positively correlated with that of vegetation layer. Spatially, both carbon storage and carbon density were higher in the eastern area, where the climate is more humid. Forest reserves and artificial afforestations can significantly improve the capacity of regional carbon sink.  相似文献   

19.
《植物生态学报》2016,40(4):405
Aims
Plantations play important roles in modifying regional carbon budget and maintaining regional carbon balance. In this study, we assessed larch plantation (Larix gmelinii var. principis-rupprechtii) carbon dynamics in Weichang County from a perspective of the forest biomass-soil-wood-products chain. Our objectives were to elucidate the carbon sink capacity of larch plantation and the influences of biomass, soil and wood product pools on carbon balance.
Methods
CO2FIX model was used to evaluate the carbon storage and flow of larch plantation over a time span of 120 years. Input data for model were derived from practical investigations and published papers. We validated the simulated results and found that this model was suitable in the region and the simulated results were reliable.
Important findings
(1) Soil was the largest carbon pool for larch plantation and the wood product pool had the smallest carbon storage. Meanwhile, carbon storage in wood products gradually increased with time. (2) In a rotation of 50 years from secondary poplar-birch forest to larch plantation, 250 t C·hm-2 was sequestrated by the larch plantation. 70% of the carbon was transferred into soil in the form of litter and logging slash and the other 30% was transferred into wood products. (3) Larch plantation was a carbon sink during most of its growing period and turned to temporary carbon source when it was harvested. Larch plantation could sequestrate about 0.3 t C·hm-2·a-1 in the long term. Our results indicated the importance of wood product carbon pool in carbon dynamics of plantation, which facilitated our understanding in the carbon dynamics and capacity of plantation.  相似文献   

20.
In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号