首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
酶是具有高度底物作用专一性和高效催化活力的生物催化剂,已在医药领域获得广泛应用,主要有治疗用酶、诊断用酶和医学基础研究及药物生产制造用酶①.治疗用酶在2010年的市值为53亿美元,到2015年可达63亿美元;2010年医疗用酶市值达60亿美元,年增长率为3.9%,预计到2015年可达到72亿美元;研究用酶2010年为5.46亿美元,到2015年可达7.39亿美元.酶作为治疗药物的应用已有50多年历史.酶用于遗传性缺酶症的特殊治疗应用始于1960年.1987年FDA批准r-tpA(Activase)用于治疗心肌梗死症,这是世界上第二个上市的重组治疗药物.  相似文献   

2.
随着生物制药的迅速发展,许多酶类药物应运而生,在治疗代谢疾病、心血管疾病、癌症等诸多疾病上发挥着越来越重要的作用。但是酶类药物也存在一些不足,如潜在的免疫原性、较短的体内半衰期,以及较差的组织靶向性,影响了酶类药物的疗效和应用。为克服这些缺点,人们已开发出多种技术,如通过糖基化、聚乙二醇修饰等分子工程技术提升酶蛋白药效,另一方面酶基因疗法也已成功用于多种酶缺陷疾病的治疗。基于酶类药物的迅速发展和广泛的应用前景,本文对酶类药物的现状进行较详细的阐述,并对酶类药物的优势、所存在的问题及未来发展趋势进行分析和评述。  相似文献   

3.
随着生物技术和现代药剂学研究的进展,酶类药物的应用取得了快速发展,已成为生物药物的一个重要门类。以下对治疗用酶的新品种、作用机理和新技术在治疗酶中的应用、酶作为药物靶点的应用等进行了回顾,并对未来治疗酶的发展方向进行了讨论。  相似文献   

4.
作为人造极端酶的交联酶晶体   总被引:2,自引:1,他引:1  
作为人造极端酶的交联酶晶体林影卢荣德郭勇(华南理工大学生物工程系,广州510640关键词交联酶晶体极端酶酶作为生物催化剂,催化效率高,立体选择性和底物专一性强,是普通化学催化剂所不可比拟的。然而,在酶的应用过程中还有很多令人不满意之处,如在环境中常常...  相似文献   

5.
陈万山 《蛇志》2001,13(4):20-21
蝮蛇抗栓酶已广泛用于治疗缺血性脑血管疾病 ,但用于治疗不稳定心绞痛的临床报道较少。为了观察蝮蛇抗栓酶治疗不稳定心绞痛疗效 ,作者用蝮蛇抗栓酶加常规药物治疗 3 4例不稳定心绞痛患者 ,并与用常规药物治疗的 3 4例不稳定心绞痛患者的疗效进行比较 ,并研究其对临床实验室指标的影响。1 临床资料1 .1 一般资料 按 1 979年 WHO推荐的及 1 994年南京召开的有关不稳定心绞痛诊断治疗研讨会诊断标准 ,并行心电图及心肌酶检查 ,除外急性心肌梗死 ,及使用蝮蛇抗栓酶禁忌症者 ,选出 6 8例不稳定心绞痛患者 ,随机分为两组。蝮蛇抗栓酶组3 4例…  相似文献   

6.
李荣球 《蛇志》1994,6(3):45-46
应用清栓酶对心脑血管病治疗,观察治疗前后血液流变学七项指标变化,经统计学分析,该药对血液流变学的疗效关系,说明该药对预防和治疗心脑血管疾病是一种较为理想的药物之一。  相似文献   

7.
张卫明  苏世祯 《蛇志》1997,9(1):23-24
蝮蛇抗栓酶在脑血管疾病中的应用(综述)张卫明苏世祯广西永福县人民医院内科541800蝮蛇抗栓酶(Svate)自临床应用以来,已发展至第三代—精制蝮蛇抗栓酶,用于脑血管疾病治疗,近年多有报道,并取得比较满意的疗效。1治疗脑栓塞陈秀华[1]就1993年1...  相似文献   

8.
纳米酶是指具有类酶催化活性的纳米材料.近年来,纳米酶研究引起了人们的极大兴趣.纳米酶已被广泛应用于诸如生物传感、生物成像、疾病治疗和环境保护等众多领域.在本综述中,我们将着重讨论纳米酶在分析化学领域的研究进展.首先将讨论纳米酶在体外检测的应用,将包括生物活性小分子、核酸、蛋白质类生物标志物、细胞等的检测.其后将讨论纳米酶在活体分析的应用,将包括监测活脑、肿瘤组织等的生物活性小分子、药物的药效、药物与纳米酶的代谢等.最后,我们将讨论纳米酶应用于分析化学时面临的挑战和未来研究前景.  相似文献   

9.
腈类物降解菌多样性和产腈水合酶研究进展   总被引:1,自引:0,他引:1  
腈水合酶催化反应在有机合成领域已有广泛的应用。作为一类重要的催化剂,腈水合酶可以将腈类物质转化为相应的酰胺。由于这种酶具有固有的立体和区域选择性,在精细化工领域已成为绿色、温和、对同分异构体具有选择性的催化剂。同时腈水合酶在生物修复和环境保护中也起着重要作用。综述了目前国内外腈水合酶的研究进展,包括降解腈类的微生物多样性、腈水合酶的催化特性、产腈水合酶菌株的改造以及腈水合酶相关基因的克隆与研究。对固定化酶和腈水合酶的应用也进行了叙述。  相似文献   

10.
卡拉胶酶是一种多糖水解酶,可以通过降解卡拉胶的β-1,4糖苷键,来生成卡拉胶低聚糖。根据酶解底物的差异,将其分为κ-卡拉胶酶,■-卡拉胶酶和λ-卡拉胶酶。近年来,研究发现卡拉胶寡糖具有抗病毒、抗肿瘤、免疫调节及抗凝血等药理活性,有望成为新一代的海洋药物而卡拉胶酶不但可以作为工具酶用于卡拉胶寡糖的制备,而且有助于卡拉胶结构的研究;另外,卡拉胶酶还可用于藻类原生质体的制备、因此,卡拉胶酶的研究具有重要的理论意义和明确的应用前景。本文从卡拉胶酶的分类及家族归属、来源、性质、分子生物学研究以及应用等方面综述了近年来国内外卡拉胶酶的最新研究进展  相似文献   

11.
With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes.  相似文献   

12.
Baking is a universal process for the preparation of baked products like, bread, biscuits, pastries, cookies, crackers, pies, and others. Although usage of enzymes in bakery is quite old but recent developments in basic biology, biochemistry, advancements in technological approaches, and discovery of new/novel enzymes, has revolutionized the application potential of enzymes in a variety of food industries including the bakery. World over people want their foods to be free of chemical preservatives and additives, therefore, the role of enzymes in potentially replacing the chemicals is very imperative. Application of enzymes in bakery not only enhances the dough properties such as, gas retention, crumb softness, water absorption capacity, and others but improves the nutritional status of products. Microbial sources of enzymes offer multiple advantages over plants and animals. Microbial enzymes from diverse resources have been reported for usage in bread making. A wide array of microbial enzymes viz. xylanases, phytases, α-amylases, proteases, cellulases, glucose oxidases, lipase and others have been reported to enhance the nutritional, sensory and other desirable properties of bread. Current article presents recent developments on application of enzymes for improvement of bread quality.  相似文献   

13.
The use of enzymes has the potential to increase productivity, efficiency and quality output in agro-industrial processing operations in many developing countries. Enzyme-catalysed processes generally have requirements for a simple manufacturing base, low capital investment and consume relatively small amounts of energy, when compared with other methods of food processing.This review presents an inventory of current and potential areas in which the use of enzymes may expand and diversify markets for agricultural products, facilitate agro-industrial development, improve nutrition, and reduce toxicity in foods produced and consumed in developing countries.  相似文献   

14.
Tumour markers correlate strongly with prognosis based on tumour burden and surgical resectability. If chemotherapy is extremely effective in certain stage of the disease, the sensitive marker may be of great use in monitoring disease response and drug treatment. Hence, this study was launched to evaluate the changes in tumour marker enzymes like lactate dehydrogenase (LDH), glumate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase, and acid phosphatase in before and after 3 and 6 months tamoxifen treated breast cancer patients. In addition, the changes in serum glycoproteins viz., hexose, hexosamine, and sialic acid and lysosomal enzymes such as N-acetyl-beta-D-glucosaminidase, beta-D-galactosidase, and beta-D-glucuronidase were analysed in these patients. These values were compared with their age matched healthy control subjects. At 6 months evaluation, the tamoxifen treated postmenopausal breast cancer women showed a statistically significant decreased (p < 0.001, 0.05 respectively) levels of LDH, SGOT, SGPT, alkaline and acid phosphatases than their baseline values. Similarly, the levels of hexose, hexosamine, and sialic acid and N-acetyl-beta-D-glucosaminidase, beta-D-galactosidase, and beta-D-glucuronidase were decreased significantly (p < 0.001 ) in tamoxifen received postmenopausal women. The result of this study suggested that tamoxifen potentially retard the metastasis of breast cancer as well as the bone demineralisation in postmenopausal breast cancer women. Thus, tamoxifen may also have its antitumour activity through its beneficial effects on tumour marker enzymes and serum proteins in breast cancer women.  相似文献   

15.
The interindividual genetic variations in drug metabolizing enzymes and transporters influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision med-icine, pharmacogenomics, the study of responses of individuals to medication based on their genomic information, enables the evaluation of some specific genetic variants responsible for an individual’s particular drug response. In this article, we review the contributions of genetic polymorphisms to major individual variations in drug pharmacotherapy, focusing specifically on the pharmacoge-nomics of phase-I drug metabolizing enzymes and transporters. Substantial frequency differences in key variants of drug metabolizing enzymes and transporters, as well as their possible functional consequences, have also been discussed across geographic regions. The current effort illustrates the common presence of variability in drug responses among individuals and across all geographic regions. This information will aid health-care professionals in prescribing the most appropriate treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects for a particular patient.  相似文献   

16.
李众  张伟  李盛英 《微生物学报》2016,56(3):496-515
细胞色素P450酶广泛存在于动植物和微生物体内,具有底物结构多样性和催化反应类型多样性,在天然产物生物合成中扮演重要作用。P450酶可在温和条件下高选择性地催化结构复杂有机化合物中惰性C-H键的氧化反应,具备化学催化剂难以比拟的优势,因此在微生物制药领域具有广阔的应用空间。本文综述了参与天然产物生物合成的P450酶近年来的研究进展;P450酶的酶工程改造、生物转化实践及其在微生物药物创制方面的应用现状;探讨了P450酶的工业应用瓶颈及其解决途径;并对P450酶未来的应用前景进行了展望。  相似文献   

17.
Heme enzymes have the potential to be widely used as biocatalysts due to their capability to perform a vast variety of oxidation reactions. In spite of their versatility, the application of heme enzymes was long time-limited for the industry due to their low activity and stability in large scale processes. The identification of novel natural biocatalysts and recent advances in protein engineering have led to new reactions with a high application potential. The latest creation of a serine-ligated mutant of BM3 showed an efficient transfer of reactive carbenes into C═C bonds of olefins reaching total turnover numbers of more than 60,000 and product titers of up to 27 g/L−1. This prominent example shows that heme enzymes are becoming competitive to chemical syntheses while being already advantageous in terms of high yield, regioselectivity, stereoselectivity and environmentally friendly reaction conditions. Advances in reactor concepts and the influencing parameters on reaction performance are also under investigation resulting in improved productivities and increased stability of the heme biocatalytic systems. In this mini review, we briefly present the latest advancements in the field of heme enzymes towards increased reaction scope and applicability.  相似文献   

18.
高盐胁迫对凡纳滨对虾消化及免疫相关酶活力的影响   总被引:3,自引:0,他引:3  
李娜  赵玉超  王仁杰  沈敏  李玉全 《生态学报》2018,38(4):1411-1417
为探讨高盐对凡纳滨对虾(Litopenaeus vannamei)消化及免疫相关酶活力的影响,实验设置了30、40、50、60共4个盐度梯度。对虾体长(7.84±0.68)cm,养殖密度333尾/m~3,每个梯度设3个平行,实验周期30d。取血淋巴、肌肉、肝胰腺等组织,检测其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)及蛋白酶、脂肪酶、淀粉酶活力。结果表明,盐度显著影响凡纳滨对虾肝胰脏中胃蛋白酶、脂肪酶、淀粉酶的活力(P0.05);随着盐度增加,消化相关酶活力均不断下降,处理间差异显著(P0.05);盐度对凡纳滨对虾不同组织的免疫指标产生影响,表现为随着盐度升高,血淋巴中,AKP活力逐渐升高,ACP、CAT和SOD活力均表现为先升高后降低;肌肉中,AKP、ACP和SOD活力呈现先升高后降低的变化趋势;肝胰脏中,AKP活力呈现先降低后升高再降低的变化趋势,ACP活力高盐处理间差异不显著(P0.05),CAT活力先降低后升高,SOD活力盐度40后逐渐降低。实验结果初步说明,高盐显著影响凡纳滨对虾的消化及免疫相关酶活力,且盐度对不同组织中免疫酶活力影响存在一定的组织特异性,50以上的高盐胁迫对对虾消化和免疫相关酶活力的影响尤为显著。  相似文献   

19.
Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications.  相似文献   

20.
The application of enzyme technologies to industrial research, development, and manufacturing has become a very important field. Since the production of crude rennet in 1874, several enzymes have been commercialized, and used for therapeutic, supplementary, and other applications. Recent advancements in biotechnology now allow companies to produce safer and less expensive enzymes with enhanced potency and specificity. Antioxidant enzymes are emerging as a new addition to the pool of industrial enzymes and are surpassing all other enzymes in terms of the volume of research and production. In the 1990s, an antioxidant enzyme--superoxide dismutase (SOD)--was introduced into the market. Although the enzyme initially showed great promise in therapeutic applications, it did not perform up to expectations. Consequently, its use was limited to non-drug applications in humans and drug applications in animals. This review summarizes the rise and fall of SOD at the industrial level, the reasons for this, and potential future thrust areas that need to be addressed. The review also focuses on other industrially relevant aspects of SOD such as industrial importance, enzyme engineering, production processes, and process optimization and scale-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号