首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of -tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the -tocopherol level and the expression of -tocopherol transfer protein (-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte -tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower -tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p0.05), despite the higher plasma -tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of -TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced -tocopherol level in leukemic leukocytes.  相似文献   

2.
Background: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. Methods and results: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term α-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received α-tocopherol there was a significant increase in plasma α-tocopherol concentrations (from 32.66±13.11 at baseline to 38.31±13.87 (mean±SD) μmol/l, p<0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated α-tocopherol (p<0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3±28.2 and 104.4±15.7 min respectively, p<0.02). Although the mean cholesterol-standardised α-tocopherol concentration within lesions did not increase, α-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma α-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of α-tocopherol and 7β-hydroxycholesterol, a free radical oxidation product of cholesterol. Conclusions: These results suggest that within plasma and lesions α-tocopherol can act as an antioxidant. They may also explain why studies using <500 IU α-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

3.
Previously prepared fluorescent derivatives of α-tocopherol have shown tremendous utility in both in vitro exploration of the mechanism of ligand transfer by the α-tocopherol transfer protein (α-TTP) and the intracellular transport of α-tocopherol in cells and tissues. We report here the synthesis of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) containing α-tocopherol analog having extended conjugation with an alkenyl thiophene group that extends the absorption and emission maxima to longer wavelengths (λex = 571 nm and λem = 583 nm). The final fluorophore thienyl-ene-BODIPY-α-tocopherol, 2, binds to recombinant human α-TTP with a Kd = 8.7 ± 1.1 nM and is a suitable probe for monitoring the secretion of α-tocopherol from cultured Mcf7#189 cells.  相似文献   

4.
α-Tocopherol transfer protein (α-TTP) is a cytosolic protein that plays an important role in regulating concentrations of plasma α-tocopherol (the most bio-active form of vitamin E). Despite the central roles that α-TTP plays in maintaining vitamin E adequacy, we have only recently proved the existence of the α-TTP gene in sheep and, for the first time, cloned its full-length cDNA. However, the study of sheep α-TTP is still in its infancy. In the present study, thirty-five local male lambs of Tan sheep with similar initial body weight were randomly divided into five groups and fed with diets supplemented with 0 (control group), 20, 100, 200, 2000 IU·sheep− 1·d− 1 vitamin E for 120 days. At the end of the experiment, the plasma and liver vitamin E contents were analyzed first and then α-TTP mRNA and protein expression levels were determined by quantitative real-time PCR (qRT-PCR) and Western-blot analysis, respectively. In addition, as no sheep α-TTP antibody was available, a specific monoclonal antibody (McAb) against the ovine α-TTP protein was prepared. The effect of vitamin E supplementation was confirmed by the significant changes in the concentrations of vitamin E in the plasma and liver. As shown by qRT-PCR and Western-blot analysis, dietary vitamin E does not affect sheep α-TTP gene expression, except for high levels of vitamin E supplementation, which significantly increased expression at the protein level. Importantly, the specific sheep anti-α-TTP McAb we generated could provide optimal recognition in ELISA, Western-blot and immunohistochemistry assays, which will be a powerful tool in future studies of the biological functions of sheep α-TTP.  相似文献   

5.
6.
Liu K  Luo HL  Yue DB  Ge SY  Yuan F  Yan LY  Jia HN 《Gene》2012,494(2):225-230
The α-tocopherol transfer protein (α-TTP) is a ~ 32 kDa protein that exhibits a marked ligand specificity and selectively recognizes of α-tocopherol, which is the most active form of vitamin E. The α-TTP gene has been cloned and its physiological functions have been studied in numbers of species, however, the understanding of sheep α-TTP is still in his infancy. In this study, the full-length cDNA of sheep α-TTP gene was cloned from sheep liver by using of rapid amplification of complementary DNA ends (RACE). As a result, the sheep α-TTP gene was 1098 bp in nucleotide which contained 23 bp 5'-untranslated region (UTR), 226 bp 3'-UTR and 849 bp open reading frame (ORF) that encoded a basic protein of 282 amino acids. Further bioinformatic analysis indicated that the sheep α-TTP gene had a high homologous of both nucleotide and amino acid sequences compared with that of other species and had a Sec14p-like lipid-binding domain which called the CRAL-TRIO domain. Moreover, the expression of sheep α-TTP mRNA and protein in response to different vitamin E supplemented levels were observed according to quantitative real-time PCR (qRT-PCR) and Western blotting analysis. The results showed that dietary vitamin E levels did not affect α-TTP mRNA expression significantly while the low vitamin E supplemented level groups of sheep had significantly higher α-TTP protein compared to high-vitamin E groups.  相似文献   

7.
Calves often face a lower plasma vitamin E level than the recommended level (3 µg/ml for adult cows) after weaning, a level which has been related to a good immune response. Two experiments were performed to determine the most effective source and level of vitamin E to be included in a calf starter to maintain the plasma vitamin E level above the recommended level after weaning. Experiment 1 (Exp 1) and experiment 2 (Exp 2) included a total of 32 and 40 calves, respectively, from 2 weeks before weaning until 2 weeks after weaning. In Exp 1, calves were orally injected a daily dose of different vitamin E sources including, no α-tocopherol (0 dose; Control), 200 mg/d of RRR-α-tocopherol (ALC), 200 mg/d of RRR-α-tocopheryl acetate (ACT), or 200 mg/d of all-rac-α-tocopheryl acetate (SYN). In Exp 2, a dose response study was carried out with 0, 60, 120, and 200 mg/kg of ALC in a pelleted calf starter. Final BW (100 ± 16 and 86 ± 11 kg) and average daily gain (956 ± 303 and 839 ± 176 g/d in Exp 1 and 2, respectively; mean ± SD) were unaffected by either source or level of α-tocopherol. In Exp 1, the plasma RRR-α-tocopherol level was affected by α-tocopherol source (P < 0.001), week (P < 0.001), and interaction between them (P < 0.001). At weaning time, the plasma RRR-α-tocopherol was 2.7, 2.1, 1.1, and 0.8 μg/ml in ALC, ACT, SYN, and Control, respectively. In Exp 2, the plasma α-tocopherol level was affected by ALC dose (P = 0.04), week (P < 0.001), and a tendency for an interaction between them was observed (P = 0.06). At weaning, a 36, 31, and 28% reduction in plasma α-tocopherol level was observed compared to the beginning of the experiment with 0, 60, and 120 mg/kg of ALC, respectively; however, with 200 mg/kg of ALC, a 9% increase in the plasma α-tocopherol level was observed. In addition, 200 mg/kg of ALC was able to maintain plasma α-tocopherol after weaning higher than the recommended level. The results showed that the ALC was the most efficient source of α-tocopherol supplementation to be used in a calf starter. In addition, the 200 mg/kg of ALC in the calf starter was the only effective dose to maintain the postweaning plasma vitamin E concentration at the recommended level after weaning and α-tocopherol similar to that observed before weaning.  相似文献   

8.
The α-tocopherol transfer protein (α-TTP) is a ~ 32 kDa cytosolic protein that plays an important role in the efficient circulation of plasma α-tocopherol in the body, a factor with great relevance in reproduction. The α-TTP gene has been studied in a number of tissues; however, its expression and function in some ovine tissues remain unclear. A previous study from our laboratory has demonstrated α-TTP expression in sheep liver. In the present study we determined whether α-TTP is expressed in non-liver tissues and investigated the effects of dietary vitamin E on the α-TTP mRNA levels. Thirty-five male Tan sheep with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2000 IU sheep− 1 day− 1 vitamin E, for four months, respectively. At the end of the study, the animals were slaughtered and tissue samples from the heart, spleen, lung, kidney, longissimus dorsi muscle and gluteus muscle were immediately collected. We found that the α-TTP gene is expressed in sheep tissues other than the liver. Moreover, dietary vitamin E levels had influenced the expression levels of α-TTP gene in these tissues in a tissue-specific way. The technique of immunohistochemistry was used to detect α-TTP in tissues of the heart, spleen, lung, and kidney and we found that α-TTP was mainly located in the cytoplasm while no α-TTP immunoreactivity was detected in the cytoplasm of longissimus dorsi and gluteus muscle samples. Importantly, our findings lay the foundation for additional experiments focusing on the absorption and metabolism of vitamin E in tissues other than the liver.  相似文献   

9.
Vitamin E (α-tocopherol) is an essential fat-soluble nutrient with antioxidant properties. α-Tocopherol transfer protein (α-TTP), the product of the gene responsible for familial isolated vitamin E deficiency, plays an important role in maintaining the plasma α-tocopherol level by mediating the secretion of α-tocopherol by the liver. However, the mechanisms underlying hepatic α-tocopherol secretion are not fully understood. This study was undertaken to elucidate the mechanism of α-tocopherol re-efflux from hepatocytes, the cells that have the most important role in regulating plasma-α-tocopherol concentrations. From in vitro experiments using [3H]α-tocopheryl acetate and McARH7777 cells that stably express α-tocopherol transfer protein (α-TTP), the following results were obtained. First, addition of apolipoprotein A-I (apoA-I), a direct acceptor of the ATP-binding cassette transporter A1 (ABCA1)-secreted lipids, increased α-tocopherol secretion in a dose-dependent manner. Second, probucol, an antiatherogenic compound reported to be an inactivator of ABCA1 reduced hepatic α-tocopherol secretion. Third, ABCA1-RNAi suppressed hepatic α-tocopherol secretion. In a mouse in vivo experiment, addition of 1% probucol to the diet decreased plasma α-tocopherol concentrations. These results strongly suggest that ABCA1 is substantially involved in hepatic α-tocopherol secretion.  相似文献   

10.
The events accompanying the inhibitory effect of α-tocopherol and/or ascorbate on the peroxidation of soybean L-α-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarograpic methods. The presence of α-tocopherol radical in the concentration range 10?8–10?7 M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylnetatramine complex. The α-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the α-tocopherol itself. A kinetic rate constant of about 2·105 M?·s?1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of α-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

11.
Lead impacts neuromuscular junction and might induce skeletal muscle weakness. Antioxidants may prevent toxic actions of lead on muscle. In this study, resting membrane potentials, endplate potentials, miniature endplate potentials (MEPPs) and isometric twitch tensions were recorded to investigate effects of α-tocopherol (Vitamin E) on lead induced changes at murine dorsiflexor muscle. Moreover, levels of endplate nicotinic receptors were measured by receptor autoradiography. Forty rats were divided into four groups (lead alone, α-tocopherol, lead plus α-tocopherol and saline). Lead (1?mg/kg, i.p.), was administered daily for 2 weeks and α-tocopherol (100?mg/kg, i.p.) was given daily for 3 weeks. Lead treatment significantly reduced twitch tension (from 4.4±0.4 to 2.2±0.3?g) and delayed half time of decay. MEPP frequencies and quantal content were also significantly reduced after lead treatment. Pretreatment with α-tocopherol reversed twitch tension reduction (4.1±0.3?g) and modified lead induced delay in half time of decay. Similarly, α-tocopherol modified the negative actions of lead exposure on MEPP frequencies and quantal content. Receptor autoradiographic studies revealed significant increase of nicotinic receptor levels at the endplate region of flexor muscle in lead treated mice. However, animals treated with lead plus α-tocopherol showed significantly decreased levels of nicotinic receptors. α-Tocopherol appears to protect against lead induced neuromuscular dysfunction. These effects of α-tocopherol are possibly mediated via a free radical mechanism or modification of calcium homeostasis.  相似文献   

12.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used α-tocopherol transfer protein knockout (α-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F2α (8-iso-PGF2α) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

13.
Chloroquine (CQ) is a widely prescribed anti-malarial agent and is also prescribed to treat autoimmune diseases. Clinical treatment with CQ is often accompanied by serious side effects such as hepatitis and retinopathy. As a weak base, CQ accumulates in intracellular acidic organelles, raises the pH, and induces osmotic swelling and permeabilization of acidic organelles, which account for CQ-induced cytotoxicity. We reported previously that CQ treatment caused α-tocopherol transfer protein (α-TTP), a gene product of familial vitamin E deficiency, to change its location from the cytosol to the surface of acidic organelles. Here we show that α-TTP plays a novel role in protecting against CQ toxicity both in vitro and in vivo. In the presence of CQ, rat hepatoma McARH7777 cells, which do not express α-TTP endogenously, showed more severe cytotoxicity, such as larger vacuolation of acidic organelles and caspase activation, than α-TTP transfectant cells. Similarly, α-TTP knockout mice showed more severe CQ toxicity, such as hepatotoxicity and retinopathy, than wild-type mice. These effects were not ameliorated by vitamin E supplementation. In contrast to bafilomycin A1 treatment, which prevents CQ accumulation in cells by raising the pH of acidic organelles, α-TTP expression prevented CQ accumulation without affecting the pH of acidic organelles. Taken together, our data suggest that α-TTP protects against CQ toxicity by preventing CQ accumulation in acidic organelles through a mechanism distinct from vitamin E transport.  相似文献   

14.
Abstract

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

15.
Niemann-Pick C disease (NPC) is a neuro-visceral lysosomal storage disorder mainly caused by genetic defects in the NPC1 gene. As a result of loss of NPC1 function large quantities of free cholesterol and other lipids accumulate within late endosomes and lysosomes. In NPC livers and brains, the buildup of lipids correlates with oxidative damage; however the molecular mechanisms that trigger it remain unknown. Here we study potential alterations in vitamin E (α-tocopherol, α-TOH), the most potent endogenous antioxidant, in liver tissue and neurons from NPC1 mice. We found increased levels of α-TOH in NPC cells. We observed accumulation and entrapment of α-TOH in NPC neurons, mainly in the late endocytic pathway. Accordingly, α-TOH levels were increased in cerebellum of NPC1 mice. Also, we found decreased mRNA levels of the α-TOH transporter, α-Tocopherol Transfer Protein (α-TTP), in the cerebellum of NPC1 mice. Finally, by subcellular fractionation studies we detected a significant increase in the hepatic α-TOH content in purified lysosomes from NPC1 mice. In conclusion, these results suggest that NPC cells cannot transport vitamin E correctly leading to α-TOH buildup in the endosomal/lysosomal system. This may result in a decreased bioavailability and impaired antioxidant function of vitamin E in NPC, contributing to the disease pathogenesis.  相似文献   

16.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

17.
To assess the effect of chronic ethanol ingestion in the content of the reduced forms of coenzymes Q9 (ubiquinol-9) and Q10 (ubiquinol-10) as a factor contributing to oxidative stress in liver and brain, male Wistar rats were fed ad libitum a basal diet containing either 10 or 2.5 mg α-tocopherol/100 g diet (controls), or the same basal diet plus a 32% ethanol-25% sucrose solution. After three months treatment, ethanol chronically-treated rats showed identical growth rates to the isocalorically pair-fed controls, irrespectively of α-tocopherol dietary level. Lowering dietary α-tocopherol led to a decreased content of this vitamin in the liver and brain of control rats, without changes in that of ubiquinol-9, and increased levels of hepatic ubiquinol-10 and total glutathione (tGSH), accompanied by a decrease in brain tGSH. At the two levels of dietary α-tocopherol, ethanol treatment significantly decreased the content of hepatic α-tocopherol and ubiquinols 9 and 10. This effect was significantly greater at 10 mg α-tocopherol/100 g diet than at 2.5, whereas those of tGSH were significantly elevated by 43% and 9%, respectively. Chronic ethanol intake did not alter the content of brain α-tocopherol and tGSH, whereas those of ubiquinol-9 were significantly lowered by 20% and 14% in rats subjected to 10 and 2.5 mg α-tocopherol/100 g diet, respectively. It is concluded that chronic ethanol intake at two levels of dietary α-tocopherol induces a depletion of hepatic α-tocopherol and ubiquinols 9 and 10, thus contributing to ethanol-induced oxidative stress in the liver tissue. This effect of ethanol is dependent upon the dietary level of α-tocopherol, involves a compensatory enhancement in hepatic tGSH availability, and is not observed in the brain tissue, probably due to its limited capacity for ethanol biotransformation and glutathione synthesis.  相似文献   

18.
Abstract

Introduction: A decrease in α-tocopherol (vitamin E) plasma levels in burn patients is typically associated with increased mortality. We hypothesized that vitamin E supplementation (α-tocopherol) would attenuate acute lung injury induced by burn and smoke inhalation injury.

Materials and Methods: Under deep anesthesia, sheep (33 ± 5 kg) were subjected to a flame burn (40% total body surface area, third degree) and inhalation injury (48 breaths of cotton smoke, < 40°C). Half of the injured group received α-tocopherol (1000 IU vitamin E) orally, 24 h prior to injury. The sham group was neither injured nor given vitamin E. All three groups (n = 5 per group) were resuscitated with Ringer's lactate solution (4 ml/kg/%burn/24 h), and placed on a ventilator (PEEP = 5 cmH2O; tidal volume = 15 ml/kg) for 48 h.

Results: Plasma α-tocopherol per lipids doubled in the vitamin E treated sheep. Vitamin E treatment prior to injury largely prevented the increase in pulmonary permeability index and moderated the increase in lung lymph flow (52.6 ± 6.2 ml/min, compared with 27.3 ± 6.0 ml/min, respectively), increased the PaO2/FiO2 ratio, ameliorated both peak and pause airway pressure increases, and decreased plasma conjugated dienes and nitrotyrosine.

Conclusions: Pretreatment with vitamin E ameliorated the acute lung injury caused by burn and smoke inhalation exposure.  相似文献   

19.
It has been claimed that coenzyme Q10 (Q10) would be an effective plasma antioxidant since it can regenerate plasma vitamin E. To test separate effects and interaction between Q10 and vitamin E in the change of plasma concentrations and in the antioxidative efficiency, we carried out a double-masked, double-blind clinical trial in 40 subjects with mild hypercholesterolemia undergoing statin treatment. Subjects were randomly allocated to parallel groups to receive either Q10 (200 mg daily), d-α-tocopherol (700 mg daily), both antioxidants or placebo for 3 months. In addition we investigated the pharmacokinetics of Q10 in a separate one-week substudy. In the group that received both antioxidants, the increase in plasma Q10 concentration was attenuated. Only vitamin E supplementation increased significantly the oxidation resistance of isolated LDL. Simultaneous Q10 supplementation did not increase this antioxidative effect of vitamin E. Q10 supplementation increased and vitamin E decreased significantly the proportion of ubiquinol of total Q10, an indication of plasma redox status in vivo. The supplementations used did not affect the redox status of plasma ascorbic acid. In conclusion, only vitamin E has antioxidative efficiency at high radical flux ex vivo. Attenuation of the proportion of plasma ubiquinol of total Q10 in the vitamin E group may represent in vivo evidence of the Q10-based regeneration of the tocopheryl radicals. In addition, Q10 might attenuate plasma lipid peroxidation in vivo, since there was an increased proportion of plasma ubiquinol of total Q10.  相似文献   

20.
Numerous studies suggest that supplemental vitamin E prior to or during vast surgeries might diminish or even prevent ischemia/reperfusion-induced injuries. In the present placebo-controlled study male Sprague-Dawley rats were supplemented parenterally or orally with α-tocopherol for three consecutive days. The applied amount of α-tocopherol was 2.3 μmol per day for oral and 1.2 μmol per day for parenteral supplementation. The enrichment of vitamin E concentrations in plasma and tissue samples (aortic endothelium, liver, and lung) was determined by HPLC. The vitamin E level was elevated following intravenous supplementation in plasma (21.4±1.9 μmol/L vs. 10.2±1.7 μmol/L in parenteral control group), in aortic endothelium (1.1±0.2 pmol/mm2 vs. 0.5±0.1 pmol/mm2) and in liver and lung (41.3±7.5 pmol/mg vs. 22.9±6.5 pmol/mg and 75.6±13.6 pmol/mg vs. 51.7±5.9 pmol/mg, respectively). Oral supplementation for three days also led to an increased level in liver (38.2±7.7 pmol/mg vs. 22.9±6.6 pmol/mg in oral control group) and in lung (67.8±5.7 pmol/mg vs. 51.7±9.3 pmol/mg) but not in aortic endothelium or plasma (0.8±0.3 pmol/mm2 vs. 0.6±0.3 pmol/mm2 and 12.0±2.2 μmol/L vs. 10.7±2.6 μol/L.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号