首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

2.
The present study evaluated the effect of increasing supplementation of all-rac-α-tocopheryl acetate and dietary fatty acid composition during a four week period after weaning on porcine tissue composition of α-tocopherol stereoisomers and fatty acids, and on hepatic expression of genes involved in transfer of α-tocopherol, and oxidation and metabolism of fatty acids. From day 28 to 56 of age, pigs were provided 5% of tallow, fish oil or sunflower oil and 85, 150, or 300 mg/kg of all-rac-α-tocopheryl acetate. Samples of liver, heart, and adipose tissue were obtained from littermates at day 56. Tissue fatty acid composition was highly influenced by dietary fat sources. Dietary fatty acid composition (P<0.001) and vitamin E supplementation (P<0.001) influenced the α-tocopherol stereoisomer composition in liver, i.e. less proportion of the RRR-α-tocopherol was observed in pigs provided fish oil and the highest dose of vitamin E in comparison with other dietary treatments. In addition, the stereoisomer composition of α-tocopherol in heart, and adipose tissue was influenced by dietary treatments. Expression of genes in liver involved in the regulation of FA conversion, SCD (P=0.002) and D6D (P=0.04) were lower in pigs fed fish oil compared to other treatments, whereas the fatty acid oxidation, as indicated by the expression of PPAR-α, was higher when sunflower and fish oil was provided (P=0.03). Expression of α-TTP in liver was higher in pigs fed fish oil (P=0.01). Vitamin E supplementation did not influence significantly the hepatic gene expression.  相似文献   

3.
In order to determine the effect of dietary vitamin E level and basal diet on vitamin E status, performance and tissue fatty acid content, five groups of eight Suffolk × Charollais wether lambs with an initial live weight of 28.4 (s.d. 1.6) kg were allocated to one of five concentrate-based diets supplemented with all-rac-α-tocopheryl acetate to contain 30 mg (C-30), 60 mg (C-60), 120 mg (C-120), 250 mg (C-250) or 500 mg (C-500) α-tocopheryl acetate/kg dry matter (DM), for 63 days. Two additional groups of eight lambs entered the study at 31.2 (s.d. 3.3) kg and were fed grass silage and 400 g/day concentrate for 56 days, with the whole diet providing the equivalent of 60 mg (S-60) or 500 mg (S-500) α-tocopheryl acetate/kg DM. Lambs were weighed and blood samples obtained by venipuncture weekly. Dietary vitamin E level did not affect performance (P > 0.05), but lambs fed grass silage grew more slowly (P < 0.001) and had a higher (P < 0.001) feed conversion ratio (kg feed/kg gain) than those fed concentrates. At day 0 plasma α-tocopherol concentrations were 0.8 μg/ml and did not differ between treatments (P > 0.05). Plasma α-tocopherol concentrations then decreased in all lambs except for those fed S-500, which increased, and at slaughter were (μg/ml) 0.07, 0.23, 0.39, 0.76 and 1.57 in C-30, C-60, C-120, C-250 and C-500 and 1.18 and 1.93 in S-60 and S-500, respectively. At slaughter, muscle and liver α-tocopherol concentrations were in the deficiency range for lambs fed C-30, C-60 or C-120, whereas plasma creatine kinase and tissue polyunsaturated fatty acids were unaffected by dietary vitamin E level, but creatine kinase levels were higher (P < 0.05) and glutathione peroxidise levels lower (P < 0.001) in lambs fed grass silage than concentrates alone. Muscle and liver α-tocopherol concentrations were 1.8- and 4.1-fold higher in lambs fed S-60 than C-60, but there was less of a difference between lambs fed S-500 or C-500 with muscle and liver differences of 0.4- and 0.7-fold, respectively. Tissue n-3 polyunsaturated fatty acid concentrations were higher (P < 0.05) and n-6 fatty acids lower in lambs receiving the grass silage compared to concentrate-based diets, but were not affected by dietary vitamin E level. It is concluded that lower plasma and tissue levels of α-tocopherol are present in lambs supplemented with all-rac-α-tocopheryl acetate on a concentrate compared to a mixed diet of silage and concentrates, and that normal growth can be achieved at tissue levels previously considered to represent deficiency.  相似文献   

4.
This study evaluated the strategy of supplementing oral micellized natural vitamin E (d-α-tocopherol) to either piglets and/or sows on α-tocopherol concentrations in piglets serum and tissues after weaning. One first experiment tested the influence of the vitamin E supplementation source (natural form in water v. the synthetic form in feed) and dose administered to piglets and/or sows on serum α-tocopherol concentration, α-tocopherol stereoisomer accumulation, antioxidant capacity and immune response of weaned piglets. A second experiment studied the effect of sow source and dose vitamin E supplementation on some of these parameters in piglets. Oral supplementation to sows with natural vitamin E as a micellized form (d-α-tocopherol) at the lowest dose produced a similar concentration of α-tocopherol in serum at days 2, 14 and 28 postpartum to those supplemented with threefold higher dose of the synthetic form in feed. At day 39 of age, neither piglet supplementation source nor dose significantly affected α-tocopherol accumulation in the serum, muscle, subcutaneous fat or liver. Those piglets from sows supplemented with the micellized alcohol form had higher RRR-α-tocopherol stereoisomers (P<0.001) and lower (P<0.001) RRS- RSS- and RSR-α-tocopherol, at day 39 of age than those from sows supplemented with the synthetic form. A predominant importance of sow over piglet vitamin E supplementation was observed on stereoisomer distribution in piglets. Low doses of oral natural vitamin E supplementation to sows or piglets did not increase the oxidative stress of piglets when compared with the use of the synthetic form in feed. Immunoglobulin levels in piglet serum at day 39 were not affected by natural vitamin E supplementation at low doses in drinking water of piglets or sows when compared with the synthetic form in feed. IgA tended to be higher (P=0.145) at day 39 in piglets supplemented with natural vitamin E when compared with those supplemented with the synthetic form. Low doses of oral micellized natural vitamin E supplementation to sows is an interesting feeding strategy, when compared with the use of high doses of the synthetic form in feed, because it results in similar α-tocopherol concentrations, allows a predominant –R stereoisomer distribution in piglets and also maintains their oxidative status in vivo.  相似文献   

5.
To establish the range of individual blood responses to supplemental vitamin E, 30 healthy subjects ingested 75 mg of deuterium-labelled α-tocopherol with a standard breakfast. Blood was collected at 6, 9, 12, 27 and 51 h post ingestion and deuterated (d6) and non-deuterated (d0) α-tocopherol concentrations were determined in plasma and red blood cells (RBC) by GC-MS. To examine intra-individual responses, 6 of these subjects were re-examined at 6-month intervals over a 30-month period. Post ingestion, the amount of d6-α-tocopherol in blood increased rapidly with time with maximal concentrations seen at 12 h (plasma) and 27 h (RBC) in most subjects. At these times, d6-α-tocopherol concentration ranged from 0.3–12.4 μmol/l in plasma and 0.6–4.09 μmol/l packed cell in RBC. Area under the curve calculations indicated inter-individual differences of α-tocopherol uptake to be 40-fold for plasma (12.9–493.3 μmol h/l) and 6-fold for RBC (24.4–146.1 μmol h/l packed RBC). Intra-individual variation in α-tocopherol uptake was small in comparison and remained relatively constant over the 30-month period. We conclude that vitamin E uptake varies widely in the normal population, although it is comparatively stable for an individual over time. These differences likely arise from variations in the regulation of vitamin E uptake and metabolism between subjects. Factors regulating this process must be better understood before the optimal intake of vitamin E can be ascertained.  相似文献   

6.
Oxidized low density lipoprotein (LDL) has a major impact in the development of atherosclerosis. Risk for oxidative modification of LDL is usually determined indirectly by measuring the capability of LDL to resist radical insult. We compared three different methods quantifying the antioxidative capacity of LDL ex vivo in dyslipidemic patients with coronary heart disease. Plasma samples were obtained from two double-blinded cross-over trials. The duration of all interventions (placebo, lovastatin 60 mg/day, RRR-α-tocopherol 300 mg/day and lovastatin + RRR-α-tocopherol combined) was 6 weeks. The total radical capturing capacity of LDL (TRAP) in plasma was determined using 2,2-azobis(2,4-dimethyl-valeronitrile) (AMVN)-induced oxidation, and measuring the extinction time of chemiluminescence. TRAP was compared to the variables characterizing formation of conjugated dienes in copper-induced oxidation. Also the initial concentrations and consumption times of reduced α-tocopherol (α-TOH) and ubiquinol in AMVN-induced oxidation were determined.

Repeatability of TRAP was comparable to that of the lag time in conjugated diene formation. Coefficient of variation within TRAP assay was 4.4% and between TRAP assays 5.9%. Tocopherol supplementation produced statistically significant changes in all antioxidant variables except those related to LDL ubiquinol. TRAP increased by 57%, the lag time in conjugated diene formation by 34% and consumption time of α-TOH by 88%. When data of all interventions were included in the analyses, TRAP correlated with the lag time (r = 0.75, p < 10-6), with LDL α -TOH (r = 0.50, p < 0.001) and with the consumption time of α-TOH (r = 0.58, p < 0.0001). In the baseline data, the associations between different antioxidant variables were weaker. TRAP correlated with the lag time (r = 0.55, p < 0.001) and α-TOH consumption time (r = 0.48, p < 0.05), and inversely with apolipoprotein Al (r = -0.51, p < 0.05). Lag time at the baseline did not correlate with ubiquinol or tocopherol parameters, or with any plasma lipid or lipoprotein levels analyzed. Lovastatin treatment did not significantly affect the antioxidant capacity of LDL. In conclusion, TRAP reflects slightly different properties of LDL compared to the lag time. Thus, LDL TRAP assay may complement the other methods used to quantify the antioxidant capacity of LDL. However, TRAP and the lag time react similarly to vitamin E supplementation.  相似文献   

7.
When supplementing lamb diets with vitamin E, an equivalence factor of 1.36 is used to discriminate between RRR-α-tocopheryl acetate and all-rac-α-tocopheryl acetate. However, more recent studies suggest a need for new equivalence factors for livestock animals. The current study aimed to determine the effect of RRR- and all-rac-α-tocopheryl acetate supplementation on α-tocopherol deposition in lamb tissues. A total of 108 Rasa Aragonesa breed lambs were fed increasing amounts of all-rac-α-tocopheryl acetate (0.25, 0.5, 1.0 and 2.0 g/kg compound feed) or RRR-α-tocopheryl acetate (0.125, 0.25, 0.5 and 1.0 g/kg compound feed) by adding them to a basal diet that contained 0.025 g/kg feed of all-rac-α-tocopheryl acetate as part of the standard vitamin and mineral mixture. The diets were fed for the last 14 days before slaughtering at 25.8±1.67 kg BW. Within 20 min after slaughter samples of muscle, heart, liver, brain and spleen were frozen at −20°C until α-tocopherol analysis. Increased supplementation of either vitamin E sources led to a significant increase (P < 0.001) in α-tocopherol concentration in all tissues studied. The tissue with the highest α-tocopherol concentration was the liver followed by spleen, heart and muscle. At similar supplementation levels (0.25, 0.50 and 1.0 g/kg compound feed), α-tocopherol content in the selected tissues was not affected by α-tocopherol source. However, the ratios between RRR- and all-rac-α-tocopheryl acetate increased with the increasing α-tocopherol supplementation (at 0.25 and 1.0 g/kg compound feed), from 1.06 to 1.16 in muscle, 1.07 to 1.15 in heart, 0.91 to 0.94 in liver and 0.98 to 1.10 in spleen. The highest relative proportion of Ʃ2S (sum of SSS-, SSR-, SRS- and SRR-α-tocopherol)-configured stereoisomers was found in the liver of lambs supplemented with all-rac-α-tocopheryl acetate accounting for up to 35 to 39% of the total α-tocopherol retained, whereas the proportion of Ʃ2S-configured stereoisomers in the other tissues accounted for <14%. Increasing all-rac-α-tocopheryl acetate supplementation was also found to affect the 2R-configured stereoisomer profile in muscle, heart and spleen with increasing proportions of RRS-, RSR- and RSS- at the cost of RRR-α-tocopherol. In all tissues, the relative proportion of all non-RRR-stereoisomers in lambs receiving RRR-α-tocopheryl acetate was lower than RRR-α-tocopherol. These results confirm that the relative bioavailability of RRR- and all-rac-α-tocopheryl acetate is dose- and tissue-dependent and that a single ratio to discriminate the two sources cannot be used.  相似文献   

8.
Abstract

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

9.
Circulating levels of α-tocopherol (vitamin E) were examined via high-performance liquid chromatography in four female Asian elephants (Elephas maximus) at the New York Zoological Park between 1983 and 1987. Plasma vitamin E averaged 0.08 μg/ml in 1983, and was considered deficient. Over a four-year period of dietary supplementation ranging from 0.7 to 3.7 IU vitamin E/kg body mass (approximately 50 to 250 IU/kg diet as fed), mean plasma α-tocopherol increased to 0.6 μg/ml. Plasma and dietary vitamin E were found to be significantly correlated (p < 0.025) in these animals. Serum or plasma vitamin E measured in an additional 20 elephants from eight other zoological institutions in the United States and Canada averaged 0.5 μg/ml, but values were not significantly correlated (p > 0.05) with calculated dietary levels of the vitamin. To achieve the mean value for circulating α-tocopherol in captive elephants (0.5 μg/ml), feed must provide at least 1.0, and more likely 2.0 to 2.5 IU vitamin E/kg body mass (approximately 130 to 167 IU/kg diet).  相似文献   

10.
To investigate the influence and possible interactions of dietary vitamin E and C supplementation on vitamin content of both vitamins and oxidative stability of different pork tissues 40 Large White barrows from 25?kg to 106?kg were allocated to four different cereal based diets: Basal diet (B), dl-α-tocopherylacetate?+?200?mg/kg (E), crystalline ascorbic acid?+?300?mg/kg (C) or both vitamins (EC). At slaughtering samples of liver, spleen, heart, kidney, backfat outer layer, ham and M. longissimus dorsi were obtained. Growth performance of the pigs and carcass characteristics were not influenced by feeding treatments. Dietary vitamin E supplementation had a significant effect on the vitamin E and α-tocopherol concentration in all investigated tissues. Backfat outer layer, liver, spleen, kidney and heart had higher vitamin E concentrations than ham and M. longissimus dorsi. Dietary vitamin C supplementation tended towards enhanced vitamin E levels except for ham samples. Therefore, some synergistic actions without dietary vitamin E supplementation between the two vitamins could be shown. The vitamin C concentration and TBARS were increased or at least equal in all tissues due to vitamin C supplementation. Dietary α-tocopherol supplementation resulted in lower TBARS in backfat outer layer (malondialdehyde 0.35?mg/kg in B vs. 0.28?mg/kg in E), but increased in heart and ham. When both vitamins were supplemented (EC) TBARS were lower in M. longissimus dorsi and backfat outer layer, equal in heart and higher in liver and ham compared to a single vitamin C supplementation. Rancimat induction time of backfat outer layer was 0.3?h higher in C compared to B and 0.17?h higher in EC than in E. Correlations between levels of both vitamins were positive for kidney (r?=?0.169), M. longissimus dorsi (r?=?0.499) and ham (r?=?0.361) and negative for heart (r?=???0.350). In liver and spleen no interaction could be found. In backfat outer layer vitamin E was positively correlated with rancimat induction time (r?=?0.550) and negatively with TBARS (r?=???0.202), but provided no evidence that dietary vitamin E supply led to better oxidative stability.  相似文献   

11.
ω6- and ω3-unsaturated lipid hydroperoxides decompose to yield pentane and ethane, respectively. Alloxan toxicity was studied in rats in relation to pentane and ethane produced during lipid peroxidation induced by intraperitoneal injection of 20 mg of alloxan/100 g body wt. Fifteen minutes after injection, vitamin E-deficient rats exhaled 102- and 11.2-fold more pentane and ethane, respectively, than prior to injection. Injection of 75 mg ascorbic acid/100 g body wt 30 min prior to alloxan treatment prolonged the time over which peroxidation occurred and all vitamin E-deficient rats died before 4 h. Vitamin E-deficient rats injected with 100 mg of the radical scavenger mannitol/ 100 g body wt 30 min prior to alloxan treatment were completely protected against lipid peroxidation, and none of the rats died by 4 h. Rats fed 40 iu dl-α-tocopherol acetate/kg diet or injected with 100 mg dl-α-tocopherol/100 g body wt were either totally protected against alloxan and alloxan-ascorbic acid-induced peroxidation or were only slightly affected as shown by very low-level pentane and ethane production. Thiobarbituric acid reactants in plasma, liver and pancreas 4 h after alloxan treatment reflected the prooxidant nature of ascorbic acid and alloxan, the vitamin E status of the rats and the protective effect of mannitol. Plasma glucose levels 4 h after alloxan injection were lowest in vitamin E-injected rats and highest in vitamin E-deficient rats. Only in vitamin E-deficient rats were both lipid peroxidation and significantly elevated plasma glucose levels observed by 4 h post-alloxan treatment.  相似文献   

12.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

13.
Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.  相似文献   

14.
Vitamin E membrane transport has been shown to involve the cholesterol transporters SR-BI, ABCA1 and NPC1L1. Our aim was to investigate the possible participation of another cholesterol transporter in cellular vitamin E efflux: ABCG1. In Abcg1-deficient mice, vitamin E concentration was reduced in plasma lipoproteins whereas most tissues displayed a higher vitamin E content compared to wild-type mice. α- and γ-tocopherol efflux was increased in CHO cells overexpressing human ABCG1 compared to control cells. Conversely, α- and γ-tocopherol efflux was decreased in ABCG1-knockdown human cells (Hep3B hepatocytes and THP-1 macrophages). Interestingly, α- and γ-tocopherol significantly downregulated ABCG1 and ABCA1 expression levels in Hep3B and THP-1, an effect confirmed in vivo in rats given vitamin E for 5 days. This was likely due to reduced LXR activation by oxysterols, as Hep3B cells and rat liver treated with vitamin E displayed a significantly reduced content in oxysterols compared to their respective controls. Overall, the present study reveals for the first time that ABCG1 is involved in cellular vitamin E efflux.  相似文献   

15.
The aryl hydrocarbon receptor (AhR) is involved in regulation of mechanisms for detoxification of xenobiotics, as well as vitamin A metabolism. Vitamin E is a fat-soluble nutrient whose metabolism is initialized via the cytochrome P450 system. Thus, AhR absence could alter hepatic regulation of α-tocopherol metabolism. To test this hypothesis, we assessed vitamin E status in adult (2-5 m) and old (21-22 m), wild-type and AhR-null mice. Plasma α-tocopherol concentrations in AhR-null mice (2.3±1.2 μmol/L, n=19) were lower than those of wild-type mice (3.2±1.2, n=17, P=.0131); those in old mice (3.2±1.2, n=20) were higher than those of adults (2.2±1.0, n=16, P=.0075). Hepatic α-tocopherol concentrations were not different between genotypes, but were nearly double in old (32±8 nmol/g, n=20) as compared with adult mice (17±2, n=16, P<.0001). Hepatic Cyp3a concentrations in AhR-null mice were greater than those in wild-type mice (P=.0011). Genotype (P=.0047), sex (P<.0001) and age (P<.0001) were significant modifiers of liver α-tocopherol metabolite (α-CEHC) concentrations. In general, Cyp3a concentrations correlated with hepatic α-tocopherol (r=0.3957, P<.05) and α-CEHC (r=0.4260, P<.05) concentrations. Since there were no significant genotype differences in the hepatic α- or γ-tocopherol concentrations, AhR-null mice did not have dramatically altered vitamin E metabolism. Since they did have higher hepatic α-CEHC concentrations, these data suggest metabolism was up-regulated in the AhR-null mice in order to maintain the hepatic tocopherol concentrations similar to those of wild-type mice.  相似文献   

16.
The aim of this study was to investigate the effect of dietary whole dried citrus pulp (DCP) on the antioxidant status of lamb tissues. In total, 17 lambs were divided into two groups and fed for 56 days: a barley-based concentrate diet (CON – eight animals), or a concentrate-based diet including 35% DCP to partially replace barley (CIT – nine animals). The CIT diet contained a double concentration of phenolic compounds than the CON diet (7.9 v. 4.0 g/kg dry matter (DM), respectively), but had no effect (P>0.05) on the overall antioxidant capacity of the hydrophilic fraction of blood plasma, liver and muscle. The CIT diet contained clearly more α-tocopherol than the CON diet (45.7 v. 10.3 mg/kg DM), which could explain the higher concentration of α-tocopherol in liver, plasma and muscle (P<0.05). The dietary treatment had no effect on the extent of lipid peroxidation, measured as thiobarbituric acid and reactive substances assay (TBARS values) in the faeces, small intestine, liver, plasma and muscle. Nevertheless, when muscle homogenates were incubated in the presence of Fe3+/ascorbate to induce lipid peroxidation, the muscle from lambs fed DCP displayed lower TBARS values (P<0.01), which negatively correlated with the concentration of α-tocopherol in muscle. These results showed that feeding whole DCP to ruminants increases the antioxidant status of muscle through an increase in the deposition of α-tocopherol.  相似文献   

17.
α-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of α-tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the α-tocopherol level and the expression of α-tocopherol transfer protein (α-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte α-tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower α-tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p&lt;0.05), despite the higher plasma α-tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p&lt;0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of α-TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced α-tocopherol level in leukemic leukocytes.  相似文献   

18.
This investigation was designed to evaluate the effects of feeding either free range or in confinement using concentrated diets with the same ingredients and oil source (5.5% of olive oleins) but with different antioxidant supplementation [control diet with a basal level of α-tocopheryl acetate (control); 200 mg/kg synthetic all-rac-α-tocopheryl acetate (Eall-rac); 200 mg/kg natural RRR-α-tocopheryl-acetate (ERRR-); flavonoid extract-enriched diet (AFlav); and phenolic compound-enriched extract (APhen)] on the fatty acid composition and lipid oxidation of Iberian pig muscle longissimus dorsi. The α-tocopherol concentration was significantly higher in muscles from free-range and ERRR- pigs than in muscles from Eall-rac pigs, and γ-tocopherol was only detected in muscles from free-range pigs. Longissimus dorsi muscles from free-range pigs had a significantly lower content of saturated fatty acids and higher content of polyunsaturated fatty acids than muscles from the other five groups of pigs fed in confinement; however, no significant effect on monounsaturated fatty acids was observed. No effect of dietary antioxidant supplementation (synthetic or natural α-tocopherol, flavonoid extract, or phenol extract) on the fatty acid composition of muscles was observed. A significant influence of dietary treatment on lipid oxidation was observed after 3 (P < 0.01), and 7 and 10 (P < 0.001) days of refrigerated storage, respectively. The lowest thiobarbituric acid-reactive substances (TBARS) values were found in pork chops from the free-range and ERRR- groups, intermediate values from the Eall-rac group, followed by AFlav and APhen, while the highest TBARS values corresponded to muscles from pigs fed the control concentrate. The source of α-tocopherol had a significant effect on lipid oxidation (P < 0.05), whereas the AFlav and APhen groups had similar TBARS values.  相似文献   

19.
Abstract

Introduction: A decrease in α-tocopherol (vitamin E) plasma levels in burn patients is typically associated with increased mortality. We hypothesized that vitamin E supplementation (α-tocopherol) would attenuate acute lung injury induced by burn and smoke inhalation injury.

Materials and Methods: Under deep anesthesia, sheep (33 ± 5 kg) were subjected to a flame burn (40% total body surface area, third degree) and inhalation injury (48 breaths of cotton smoke, < 40°C). Half of the injured group received α-tocopherol (1000 IU vitamin E) orally, 24 h prior to injury. The sham group was neither injured nor given vitamin E. All three groups (n = 5 per group) were resuscitated with Ringer's lactate solution (4 ml/kg/%burn/24 h), and placed on a ventilator (PEEP = 5 cmH2O; tidal volume = 15 ml/kg) for 48 h.

Results: Plasma α-tocopherol per lipids doubled in the vitamin E treated sheep. Vitamin E treatment prior to injury largely prevented the increase in pulmonary permeability index and moderated the increase in lung lymph flow (52.6 ± 6.2 ml/min, compared with 27.3 ± 6.0 ml/min, respectively), increased the PaO2/FiO2 ratio, ameliorated both peak and pause airway pressure increases, and decreased plasma conjugated dienes and nitrotyrosine.

Conclusions: Pretreatment with vitamin E ameliorated the acute lung injury caused by burn and smoke inhalation exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号