首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used alpha-tocopherol transfer protein knockout (alpha-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

2.
Resistance to hyperoxia with heme oxygenase-1 disruption: role of iron   总被引:5,自引:0,他引:5  
In many models, a protective role for heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, has been demonstrated. Also, HO-1 null mice (KO) are more susceptible to inflammation and hypoxia and transplant rejection. Nonetheless, their response to hyperoxia (> 95% O(2)) has not yet been evaluated. Surprisingly, after acute hyperoxic exposure, KO had significantly decreased markers of lung oxidative injury and survived chronic hyperoxia as well as wild-type (WT) controls. Disrupted HO-1 expression was associated with decreased lung reactive iron and iron-associated proteins, decreased NADPH cytochrome cp450 reductase activity, and decreased lung peroxidase activity compared to WT. Injection of tin protoporphyrin, an inhibitor of HO, in the WT decreased acute hyperoxic lung injury, whereas transduction of human HO-1 in the KO reversed the relative protection of the KO to acute injury and worsened hyperoxic survival. This suggests that disruption of HO-1 protects against hyperoxia by diminishing the generation of toxic reactive intermediates in the lung via iron and H(2)O(2).  相似文献   

3.
Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome. Cytochrome P450 (CYP) 1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung. Eight- to ten-week-old WT (C57BL/6) or Cyp1a2−/− mice were exposed to hyperoxia (>95% O2) or maintained in room air for 24–72 h. Lung injury was assessed by determining the ratio of lung weight/body weight (LW/BW) and by histology. Extent of inflammation was determined by measuring the number of neutrophils in the lung as well as cytokine expression. The Cyp1a2−/− mice under hyperoxic conditions showed increased LW/BW ratios, lung injury, neutrophil infiltration, and IL-6 and TNF-α levels and augmented lipid peroxidation, as evidenced by increased formation of malondialdehyde– and 4-hydroxynonenal–protein adducts and pulmonary isofurans compared to WT mice. In vitro experiments showed that the F2-isoprostane PGF2-α is metabolized by CYP1A2 to a dinor metabolite, providing evidence for a catalytic role for CYP1A2 in the metabolism of F2-isoprostanes. In summary, our results support the hypothesis that hepatic CYP1A2 plays a critical role in the attenuation of hyperoxic lung injury by decreasing lipid peroxidation and oxidative stress in vivo.  相似文献   

4.

Background

Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention.

Methods

Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate.

Results

Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05).

Conclusion

Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.  相似文献   

5.
6.
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical‐induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild‐type (WT) mice. CCl 4‐induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin‐related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4‐induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.  相似文献   

7.

Background

The receptor for advanced glycation end-products (RAGE) has been suggested to modulate lung injury in models of acute pulmonary inflammation. To study this further, model systems utilizing wild type and RAGE knockout (KO) mice were used to determine the role of RAGE signaling in lipopolysaccharide (LPS) and E. coli induced acute pulmonary inflammation. The effect of intraperitoneal (i.p.) and intratracheal (i.t.) administration of mouse soluble RAGE on E. coli injury was also investigated.

Methodology/Principal Findings

C57BL/6 wild type and RAGE KO mice received an i.t. instillation of LPS, E. coli, or vehicle control. Some groups also received i.p. or i.t. administration of mouse soluble RAGE. After 24 hours, the role of RAGE expression on inflammation was assessed by comparing responses in wild type and RAGE KO. RAGE protein levels decreased in wild type lung homogenates after treatment with either LPS or bacteria. In addition, soluble RAGE and HMGB1 increased in the BALF after E. coli instillation. RAGE KO mice challenged with LPS had the same degree of inflammation as wild type mice. However, when challenged with E. coli, RAGE KO mice had significantly less inflammation when compared to wild type mice. Most cytokine levels were lower in the BALF of RAGE KO mice compared to wild type mice after E. coli injury, while only monocyte chemotactic protein-1, MCP-1, was lower after LPS challenge. Neither i.p. nor i.t. administration of mouse soluble RAGE attenuated the severity of E. coli injury in wild type mice.

Conclusions/Significance

Lack of RAGE in the lung does not protect against LPS induced acute pulmonary inflammation, but attenuates injury following live E. coli challenge. These findings suggest that RAGE mediates responses to E. coli-associated pathogen-associated molecular pattern molecules other than LPS or other bacterial specific signaling responses. Soluble RAGE treatment had no effect on inflammation.  相似文献   

8.
Mice lacking the vitamin D receptor (VDR) are resistant to airway inflammation. Pathogenic immune cells capable of transferring experimental airway inflammation to wildtype (WT) mice are present and primed in the VDR KO mice. Furthermore, the VDR KO immune cells homed to the WT lung in sufficient numbers to induce symptoms of asthma. Conversely, WT splenocytes, Th2 cells and hematopoetic cells induced some symptoms of experimental asthma when transferred to VDR KO mice, but the severity was less than that seen in the WT controls. Interestingly, experimentally induced vitamin D deficiency failed to mirror the VDR KO phenotype suggesting there might be a difference between absence of the ligand and VDR deficiency. Lipopolysaccharide (LPS) induced inflammation in the lungs of VDR KO mice was also less than in WT mice. Together the data suggest that vitamin D and the VDR are important regulators of inflammation in the lung and that in the absence of the VDR the lung environment, independent of immune cells, is less responsive to environmental challenges.  相似文献   

9.
10.
11.
Many conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle. Therefore, the current investigation aimed to verify the responses of ER stress markers in wild-type (WT) and Tlr4 global knockout (KO) mice after acute and chronic physical exercise protocols. Eight-week-old male WT and KO mice were submitted to acute (moderate or high intensity) and chronic (4-week protocol) treadmill exercises. Under basal conditions, KO mice showed lower performance in the rotarod test. Acute high-intensity exercise increased eIF2α protein in the WT group. After the acute high-intensity exercise, there was an increase in Casp3 and Ddit3 mRNA for the KO mice. Acute moderate exercise increased the cleaved Caspase-3/Caspase-3 in the KO group. In response to chronic exercise, the KO group showed no improvement in any performance evaluation. The 4-week chronic protocol did not generate changes in ATF6, CHOP, p-IRE1α, p-eIF2α/eIF2α, and cleaved Caspase-3/Caspase-3 ratio but reduced BiP protein compared with the KO-Sedentary group. These results demonstrate the global deletion of Tlr4 seems to have the same effects on UPR markers of WT animals after acute and chronic exercise protocols but decreased performance. The cleaved Caspase-3/Caspase-3 ratio may be activated by another pathway other than ER stress in Tlr4 KO animals.  相似文献   

12.
This study investigated the ability of aerosolized bovine lactoferrin (bLF) to protect the lungs from injury induced by chronic hyperoxia. Female CD-1 mice were exposed to hyperoxia (FiO2 = 80 %) for 7 days to induce lung injury and fibrosis. The therapeutic effects of bLF, administered via an aerosol delivery system, on the chronic lung injury induced by this period of hyperoxia were measured by bronchoalveolar lavage, lung histology, cell apoptosis, and inflammatory cytokines in the lung tissues. After exposure to hyperoxia for 7 days, the survival of the mice was significantly decreased to 20 %. The protective effects of bLF against hyperoxia were further confirmed by significant reductions in lung edema, total cell numbers in bronchoalveolar lavage fluid, inflammatory cytokines (IL-1β and IL-6), pulmonary fibrosis, and apoptotic DNA fragmentation. The aerosolized bLF protected the mice from oxygen toxicity and increased the survival fraction to 66.7 % in the hyperoxic model. The results support the use of an aerosol therapy with bLF in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure or chronic obstructive pulmonary disease.  相似文献   

13.
14.
BackgroundHyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2) can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS) is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response.MethodsWild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h.ResultsExposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice.ConclusionTaken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.  相似文献   

15.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein–coupled receptors (S1P1–5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor β1 (TGF-β1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.  相似文献   

16.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

17.
Iron deficiency is routinely treated with oral or systemic iron supplements, which are highly reactive and could induce oxidative stress via augmenting the activity of proinflammatory enzyme myeloperoxidase (MPO). To investigate the extent to which MPO is involved in iron-induced toxicity, acute (24 h) iron toxicity was induced by intraperitoneal administration of FeSO4 (25 mg/kg body weight) to MPO-deficient (MpoKO) mice and their wild-type (WT) littermates. Acute iron toxicity was also assessed in WT mice pretreated with an MPO inhibitor, 4-aminobenzoic acid hydrazide. Systemic iron administration up-regulated circulating MPO and neutrophil elastase and elevated systemic inflammatory and organ damage markers in WT mice. However, genetic deletion of MPO or its inhibition significantly reduced iron-induced organ damage and systemic inflammatory responses. In contrast to the acute model, 8 weeks of 2% carbonyl iron diet feeding to WT mice did not change the levels of circulating MPO and neutrophil elastase but promoted their accumulation in the liver. Even though both MpoKO and WT mice displayed similar levels of diet-induced hyperferremia, MpoKO mice showed significantly reduced inflammatory response and oxidative stress than the WT mice. In addition, WT bone-marrow-derived neutrophils (BMDN) generated more reactive oxygen species than MPO-deficient BMDN upon iron stimulation. Altogether, genetic deficiency or pharmacologic inhibition of MPO substantially attenuated acute and chronic iron-induced toxicity. Our results suggest that targeting MPO during iron supplementation is a promising approach to reduce iron-induced toxicity/side effects in vulnerable population.  相似文献   

18.
Angiogenesis is one of the most important processes for normal lung development. Oxidative stress can impair the pulmonary angiogenesis, leading to chronic lung disease or Bronchopulmonary dysplasia (BPD).

Objective

To investigate the protective effects of EC-SOD overexpression on pulmonary angiogenesis on neonates following exposure to acute hyperoxia.

Design/Methods

Transgenic (TG) and wild-type (WT) neonatal mice (10 mice per group) were exposed either to air (control group) or 95% O2 for 7 days starting at birth. After exposure, all animals were sacrificed. ROS concentration was measured in lung homogenates using OxiSelect ROS assay kit. Mean vascular density (MVD) was measured using anti CD34 staining. RNA was extracted and the angiogenesis markers, VEGF, VEGFR1 and VEGFR2 and PECAM-1 were analyzed by RT-q PCR. VGEF protein was measured using Western blots. Endothelial progenitor cells (EPCs) was assayed by flow cytometer.

Results

There was a significant reduction of ROS in TG hyperoxic neonate group (156±14.2) compared to WT hyperoxic animals (255±35.1). Evaluation of MVD, using anti-CD34, showed marked significant increase of MVD in the TG group following hyperoxic exposure (85±12) in comparison to the WT hyperoxic group (62±8.4), (P<0.05). Among the hyperoxic groups, both RNA and protein of VEGF expression were significantly reduced in the WT animals compared to the TG group (P<0.05). The same trend was found in VEGFR 1 and 2 which were significantly reduced in WT group compared to the TG group (P<0.05). There was no significant difference between hyperoxia TG and control group (P>0.05). PECAM expression was significantly reduced in both hyperoxic compared to normoxic groups (P<0.05). EPC’s showed significant reduction in WT hyperoxic group compared to others (P>0.05).

Conclusions

EC-SOD plays a key role in preserving angiogenesis by scavenging free radicals which has an inhibitory effect on angiogenesis process in neonatal mice lung following exposure to hyperoxia.  相似文献   

19.
Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver, and liver injury. This study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild-type (WT), CYP2E1-knock-in (KI), and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair-fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolyl hydroxylase 2, which promotes HIF-1α degradation, were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol-fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were colocalized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells, which express CYP2E1, with ethanol plus arachidonic acid (AA) or ethanol plus buthionine sulfoximine (BSO), which depletes glutathione, caused loss of cell viability to a greater extent than in HepG2 C34 cells, which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than in C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced by ethanol/AA or ethanol/BSO in the E47 cells. These results suggest that CYP2E1 plays a role in ethanol-induced hypoxia, oxidative stress, and activation of HIF-1α and that HIF-1α contributes to CYP2E1-dependent ethanol-induced toxicity. Blocking HIF-1α activation and actions may have therapeutic implications for protection against ethanol/CYP2E1-induced oxidative stress, steatosis, and liver injury.  相似文献   

20.
The angiogenic growth factor angiopoietin 2 (Ang2) destabilizes blood vessels, enhances vascular leak and induces vascular regression and endothelial cell apoptosis. We considered that Ang2 might be important in hyperoxic acute lung injury (ALI). Here we have characterized the responses in lungs induced by hyperoxia in wild-type and Ang2-/- mice or those given either recombinant Ang2 or short interfering RNA (siRNA) targeted to Ang2. During hyperoxia Ang2 expression is induced in lung epithelial cells, while hyperoxia-induced oxidant injury, cell death, inflammation, permeability alterations and mortality are ameliorated in Ang2-/- and siRNA-treated mice. Hyperoxia induces and activates the extrinsic and mitochondrial cell death pathways and activates initiator and effector caspases through Ang2-dependent pathways in vivo. Ang2 increases inflammation and cell death during hyperoxia in vivo and stimulates epithelial necrosis in hyperoxia in vitro. Ang2 in plasma and alveolar edema fluid is increased in adults with ALI and pulmonary edema. Tracheal Ang2 is also increased in neonates that develop bronchopulmonary dysplasia. Ang2 is thus a mediator of epithelial necrosis with an important role in hyperoxic ALI and pulmonary edema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号