首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canonical Wnt/beta-catenin signaling has central roles in development and diseases, and is initiated by the action of the frizzled (Fz) receptor, its coreceptor LDL receptor-related protein 6 (Lrp6), and the cytoplasmic dishevelled (Dvl) protein. The functional relationships among Fz, Lrp6 and Dvl have long been enigmatic. We demonstrated previously that Wnt-induced Lrp6 phosphorylation via glycogen synthase kinase 3 (Gsk3) initiates Wnt/beta-catenin signaling. Here we show that both Fz and Dvl functions are critical for Wnt-induced Lrp6 phosphorylation through Fz-Lrp6 interaction. We also show that axin, a key scaffolding protein in the Wnt pathway, is required for Lrp6 phosphorylation via its ability to recruit Gsk3, and inhibition of Gsk3 at the plasma membrane blocks Wnt/beta-catenin signaling. Our results suggest a model that upon Wnt-induced Fz-Lrp6 complex formation, Fz recruitment of Dvl in turn recruits the axin-Gsk3 complex, thereby promoting Lrp6 phosphorylation to initiate beta-catenin signaling. We discuss the dual roles of the axin-Gsk3 complex and signal amplification by Lrp6-axin interaction during Wnt/beta-catenin signaling.  相似文献   

2.
Wnt/beta-catenin signaling has been implicated in repressing adipogenesis. Several lines of evidence show that the possible mechanism is blockade of PPARgamma induction. However, the precise mechanisms remain to be elucidated. In this study, we demonstrated that Wnt3a conditioned medium suppresses C/EBPbeta/delta-induced adipogenesis of 3T3-L1 cells by inhibiting PPARgamma induction. In addition, the mutual activation of PPARgamma and C/EBPalpha was also repressed in the presence of Wnt3a. To further investigate the role of the canonical Wnt pathway in adipogenesis, we used mouse embryonic fibroblasts (MEFs) isolated from Lrp6-deficient embryos. Contrary to wild-type MEFs, Lrp6-deficient MEFs showed spontaneous adipogenesis and escaped the suppressive effect of exogenous Wnt3a. These findings suggest a critical role of Wnt/Lrp6/beta-catenin signaling in adipogenesis and cell fate decision of mesenchymal stem cells.  相似文献   

3.
Wnt signaling through the canonical beta-catenin pathway plays essential roles in development and disease. Low-density-lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) in vertebrates, and their Drosophila ortholog Arrow, are single-span transmembrane proteins that are indispensable for Wnt/beta-catenin signaling, and are likely to act as Wnt co-receptors. This review highlights recent progress and unresolved issues in understanding the function and regulation of Arrow/Lrp5/Lrp6 in Wnt signaling. We discuss Arrow/Lrp5/Lrp6 interactions with Wnt and the Frizzled family of Wnt receptors, and with the intracellular beta-catenin degradation apparatus. We also discuss the regulation of Lrp5/Lrp6 by other extracellular ligands, and LRP5 mutations associated with familial osteoporosis and other disorders.  相似文献   

4.
5.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral endoderm and anterior epiblast fates are specified. Thus, Lrp5 and Lrp6 are required for posterior patterning of the epiblast, consistent with a role in transducing Wnt signals in the early embryo. Interestingly, Lrp5(+/-);Lrp6(-/-) embryos die shortly after gastrulation and exhibit an accumulation of cells at the primitive streak and a selective loss of paraxial mesoderm. A similar phenotype is observed in Fgf8 and Fgfr1 mutant embryos and provides genetic evidence in support of a molecular link between the Fgf and Wnt signaling pathways in patterning nascent mesoderm. Lrp5(+/-);Lrp6(-/-) embryos also display an expansion of anterior primitive streak derivatives and anterior neurectoderm that correlates with increased Nodal expression in these embryos. The effect of reducing, but not eliminating, Wnt signaling in Lrp5(+/-);Lrp6(-/-) mutant embryos provides important insight into the interplay between Wnt, Fgf and Nodal signals in patterning the early mouse embryo.  相似文献   

6.
The Dkk family of secreted cysteine-rich proteins regulates Wnt/beta-catenin signaling by interacting with the Wnt co-receptor Lrp5/6. Here, we show that Dkk2-mediated repression of the Wnt/beta-catenin pathway is essential to promote differentiation of the corneal epithelial progenitor cells into a non-keratinizing stratified epithelium. Complete transformation of the corneal epithelium into a stratified epithelium that expresses epidermal-specific differentiation markers and develops appendages such as hair follicles is achieved in the absence of the Dkk2 gene function. We show that Dkk2 is a key regulator of the corneal versus epidermal fate of the ocular surface epithelium.  相似文献   

7.
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.  相似文献   

8.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.  相似文献   

9.
Axam has been identified as a novel Axin-binding protein that inhibits the Wnt signaling pathway. We studied the molecular mechanism by which Axam stimulates the downregulation of beta-catenin. The C-terminal region of Axam has an amino acid sequence similar to that of the catalytic region of SENP1, a SUMO-specific protease (desumoylation enzyme). Indeed, Axam exhibited activity to remove SUMO from sumoylated proteins in vitro and in intact cells. The Axin-binding domain is located in the central region of Axam, which is different from the catalytic domain. Neither the Axin-binding domain nor the catalytic domain alone was sufficient for the downregulation of beta-catenin. An Axam fragment which contains both domains was able to decrease the level of beta-catenin. On substitution of Ser for Cys(547) in the catalytic domain, Axam lost its desumoylation activity. Further, this Axam mutant decreased the activity to downregulate beta-catenin. Although Axam strongly inhibited axis formation and expression of siamois, a Wnt-response gene, in Xenopus embryos, Axam(C547S) showed weak activities. These results demonstrate that Axam functions as a desumoylation enzyme to downregulate beta-catenin and suggest that sumoylation is involved in the regulation of the Wnt signaling pathway.  相似文献   

10.
11.
Here, we present evidence that Lrp6, a coreceptor for Wnt ligands, is required for the normal formation of somites and bones. By positional cloning, we demonstrate that a novel spontaneous mutation ringelschwanz (rs) in the mouse is caused by a point mutation in Lrp6, leading to an amino acid substitution of tryptophan for the evolutionarily conserved residue arginine at codon 886 (R886W). We show that rs is a hypomorphic Lrp6 allele by a genetic complementation test with Lrp6-null mice, and that the mutated protein cannot efficiently transduce signals through the Wnt/beta-catenin pathway. Homozygous rs mice, many of which are remarkably viable, exhibit a combination of multiple Wnt-deficient phenotypes, including dysmorphologies of the axial skeleton, digits and the neural tube. The establishment of the anteroposterior somite compartments, the epithelialization of nascent somites, and the formation of segment borders are disturbed in rs mutants, leading to a characteristic form of vertebral malformations, similar to dysmorphologies in individuals suffering from spondylocostal dysostosis. Marker expression study suggests that Lrp6 is required for the crosstalk between the Wnt and notch-delta signaling pathways during somitogenesis. Furthermore, the Lrp6 dysfunction in rs leads to delayed ossification at birth and to a low bone mass phenotype in adults. Together, we propose that Lrp6 is one of the key genetic components for the pathogenesis of vertebral segmentation defects and of osteoporosis in humans.  相似文献   

12.
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.  相似文献   

13.
Lrp5/6 are crucial coreceptors for Wnt/β-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/β-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6−/− mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.  相似文献   

14.
The related Wnt-Frizzled(Fz)/beta-catenin and Fz/planar cell polarity (PCP) pathways are essential for the regulation of numerous developmental processes and are deregulated in many human diseases. Both pathways require members of the Dishevelled (Dsh or Dvl) family of cytoplasmic factors for signal transduction downstream of the Fz receptors. Dsh family members have been studied extensively, but their activation and regulation remains largely unknown. In particular, very little is known about how Dsh differentially signals to the two pathways. Recent work in cell culture has suggested that phosphorylation of Dsh by Casein Kinase I epsilon (CKIepsilon) may act as a molecular "switch," promoting Wnt/beta-catenin while inhibiting Fz/PCP signaling. Here, we demonstrate in vivo in Drosophila through a series of loss-of-function and coexpression assays that CKIepsilon acts positively for signaling in both pathways, rather than as a switch. Our data suggest that the kinase activity of CKIepsilon is required for peak levels of Wnt/beta-catenin signaling. In contrast, CKIepsilon is a mandatory signaling factor in the Fz/PCP pathway, possibly through a kinase-independent mechanism. Furthermore, we have identified the primary kinase target residue of CKIepsilon on Dsh. Thus, our data suggest that CKIepsilon modulates Wnt/beta-catenin and Fz/PCP signaling pathways via kinase-dependent and -independent mechanisms.  相似文献   

15.
16.
Wu J  Mlodzik M 《Developmental cell》2008,15(3):462-469
The Frizzled (Fz) receptor is required cell autonomously in Wnt/beta-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz(-) patches reorient toward the fz(-) cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field.  相似文献   

17.
Zygotic Wnt signaling has been shown to be involved in dorsoventral mesodermal patterning in Xenopus embryos, but how it regulates different myogenic gene expression in the lateral mesodermal domains is not clear. Here, we use transient exposure of embryos or explants to lithium, which mimics Wnt/beta-catenin signaling, as a tool to regulate the activation of this pathway at different times and places during early development. We show that activation of Wnt/beta-catenin signaling at the early gastrula stage rapidly induces ectopic expression of XMyf5 in both the dorsal and ventral mesoderm. In situ hybridization analysis reveals that the induction of ectopic XMyf5 expression in the dorsal mesoderm occurs within 45 min and is not blocked by the protein synthesis inhibitor cycloheximide. By contrast, the induction of XMyoD is observed after 2 h of lithium treatment and the normal expression pattern of XMyoD is blocked by cycloheximide. Analysis by RT-PCR of ectodermal explants isolated soon after midblastula transition indicates that lithium also specifically induces XMyf5 expression, which takes place 30 min following lithium treatment and is not blocked by cycloheximide, arguing strongly for an immediate-early response. In the early gastrula, inhibition of Wnt/beta-catenin signaling blocks the expression of XMyf5 and XMyoD, but not of Xbra. We further show that zygotic Wnt/beta-catenin signaling interacts specifically with bFGF and eFGF to promote XMyf5 expression in ectodermal cells. These results suggest that Wnt/beta-catenin pathway is required for regulating myogenic gene expression in the presumptive mesoderm. In particular, it may directly activate the expression of the XMyf5 gene in the muscle precursor cells.  相似文献   

18.
Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak.  相似文献   

19.
Many components of the Wnt/beta-catenin signaling pathway are expressed during mouse pre-implantation embryo development, suggesting that this pathway may control cell proliferation and differentiation at this time. We find no evidence for a functional activity of this pathway in cleavage-stage embryos using the Wnt-reporter line, BAT-gal. To further probe the activity of this pathway, we activated beta-catenin signaling by mating a zona pellucida3-cre (Zp3-cre) transgenic mouse line with a mouse line containing an exon3-floxed beta-catenin allele. The result is expression of a stabilized form of beta-catenin, resistant to degradation by the GSK3beta-mediated proteasome pathway, expressed in the developing oocyte and in each cell of the resulting embryos. Nuclear localization and signaling function of beta-catenin were not observed in cleavage-stage embryos derived from these oocytes. These results indicate that in pre-implantation embryos, molecular mechanisms independent of the GSK3beta-mediated ubiquitination and proteasome degradation pathway inhibit the nuclear function of beta-catenin. Although the mutant blastocysts initially developed normally, they then exhibited a specific phenotype in the embryonic ectoderm layer of early post-implantation embryos. We show a nuclear function of beta-catenin in the mutant epiblast that leads to activation of Wnt/beta-catenin target genes. As a consequence, cells of the embryonic ectoderm change their fate, resulting in a premature epithelial-mesenchymal transition.  相似文献   

20.
The Wnt/beta-catenin signaling pathway plays multiple roles during embryonic development, only a few of which have been extensively characterized. Although domains of Wnt expression have been identified throughout embryogenesis, anatomical and molecular characterization of responding cells has been mostly unexplored. We have generated a transgenic zebrafish line that expresses a destabilized green fluorescent protein (GFP) variant under the control of a beta-catenin responsive promoter. Early zygotic expression of this transgene (TOPdGFP) mirrors known domains of Wnt signaling in the embryo. Loss of Lef1 activity results in decreased reporter expression and posterior defects, while loss of Tcf3 (Headless, Hdl) activity does not alter reporter expression, even though it results in loss of forebrain structures. In addition, ectopic Wnt1 expression can activate the reporter. In older embryos, we identify a number of transgene-expressing cell populations as novel sites of beta-catenin signaling. We conclude that our TOP-dGFP reporter line faithfully illustrates domains of beta-catenin activity and enables the identification of responsive cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号