首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.Subject terms: Cell-cycle exit, Cytokinesis  相似文献   

3.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.  相似文献   

4.
A canonical Wnt signal maintains adult mammary ductal stem cell activity, and this signal requires the Wnt signaling reception, LRP5. However, previous data from our laboratory have shown that LRP5 and LRP6 are co-expressed in mammary basal cells and that LRP6 is active, leading us to question why LRP6 is insufficient to mediate canonical signaling in the absence of LRP5. Here, we show that at endogenous levels of LRP5 and LRP6 both receptors are required to signal in response to some Wnt ligands both in vitro (in mouse embryonic fibroblasts and mammary epithelial cells) and in vivo (in mammary outgrowths). This subgroup of canonical ligands includes Wnt1, Wnt9b, and Wnt10b; the latter two are expressed in mammary gland. In contrast, the ligand commonly used experimentally, Wnt3a, prefers LRP6 and requires just one receptor regardless of cellular context. When either LRP5 or LRP6 is overexpressed, signaling remains ligand-dependent, but the requirement for both receptors is abrogated (regardless of ligand type). We have documented an LRP5-6 heteromer using immiscible filtration assisted by surface tension (IFAST) immunoprecipitation. Together, our data imply that under physiological conditions some Wnt ligands require both receptors to be present to generate a canonical signal. We have designed a model to explain our results based on the resistance of LRP5-6 heteromers to a selective inhibitor of E1/2-binding Wnt-LRP6 interaction. These data have implications for stem cell biology and for the analysis of the oncogenicity of LRP receptors that are often overexpressed in breast tumors.  相似文献   

5.
LRP5 and LRP6 comprise a subfamily of lipoprotein-receptor related proteins that function as co-receptors for Wnt proteins. Mutation of human LRP5 is responsible for osteoporosis-pseudoglioma syndrome and disruption of Lrp6 in mice causes similar effects to mutation of several different Wnt genes. We have cloned Xenopus homologues of Lrp5 and Lrp6 (Xlrp5, Xlrp6) and examined their expression during embryogenesis. Both genes are expressed maternally and ubiquitously through early development. At later stages, Xlrp5 is found in the eye, forebrain, hindbrain, branchial arches and the tip of the tail bud. Xlrp6 is expressed throughout the central nervous system, branchial arches, in the eye and otic vesicle. Both genes are also expressed at the intersomitic boundary. These results suggest roles for Wnt signaling via LRP proteins in these tissues.  相似文献   

6.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.  相似文献   

7.
8.
Various types of somatic stem cell have been tested for their response to genotoxic exposure, since these cells are likely to be important to regeneration, aging and cancer. In this study, we evaluated the response of mammary stem cells to genotoxic exposure during ductal growth in juveniles. Exposure to the polycyclic aromatic hydrocarbon (DMBA; 7,12 dimethylbenz[a]anthracene) had no gross effect on outgrowth and morphogenesis of the ductal tree, or upon lobuloalveolar growth during pregnancy. However, by fat pad assay, we found that mammary stem cell activity was reduced by 80% in glands from adults that were exposed to genotoxins as juveniles. The associated basal cell lineage was depleted. Both basal and luminal cells showed a robust response to genotoxic exposure (including γH2AX phosphorylation, pS15p53 and pT68Chk2), with durable hyperproliferation, but little cytotoxicity. Since the phenotype of these glands (low basal cell fraction, low stem cell activity) phenocopies mammary glands with loss of function for Wnt signaling, we measured Wnt signaling in genotoxin-exposed glands, and found a durable reduction in the activation of the canonical signaling Wnt receptors, Lrp5/6. Furthermore, when mammary epithelial cells were treated with Wnt3a, DMBA exposure reduced the basal cell population and Lrp activation was ablated. We conclude that during active ductal growth, Wnt-dependent mammary stem cells are sensitized to cell death by genotoxin exposure. Our conclusion may be important for other tissues, since all solid tumor stem cell activities have been shown to be Wnt-dependent to date.  相似文献   

9.
10.
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.  相似文献   

11.
In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.  相似文献   

12.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

13.
Wnt signals play a critical role in regulating the normal development of the mammary gland and dysregulation of Wnt signaling causes breast cancer. This pathway is involved in the earliest development of the mammary gland in embryos and its role extends through the functional differentiation of the gland during pregnancy. In this review, we summarize the molecular mechanisms through which Wnts regulate mammary gland development in the mouse.Key words: Wnt, mammary gland, embryo, postnatal, cancer, stem cell  相似文献   

14.

Background

Wnt signals are important for embryonic stem cells renewal, growth and differentiation. Although 19 Wnt, 10 Frizzled genes have been identified in mammals, their expression patterns in stem cells were largely unknown.

Results

We conducted RNA expression profiling for the Wnt ligands, their cellular receptors "Frizzleds" and co-receptors LRP5/6 in human embryonic stem cells (H7), human bone marrow mesenchymal cells, as well as mouse totipotent F9 teratocarcinoma embryonal cells. Except failing to express Wnt2 gene, totipotent F9 cells expressed RNA for all other 18 Wnt genes as well as all 10 members of Frizzled gene family. H7 cells expressed RNA for each of the 19 Wnt genes. In contrast, human mesenchymal cells did not display detectable RNA expression of Wnt1, Wnt8a, Wnt8b, Wnt9b, Wnt10a, and Wnt11. Analysis of Frizzled RNAs in H7 and human mesechymal cells revealed expression of 9 members of the receptor gene family, except Frizzled8. Expression of the Frizzled co-receptor LRP5 and LRP6 genes were detected in all three cell lines. Human H7 and mouse F9 cells express nearly a full complement of both Wnts and Frizzleds genes. The human mesenchymal cells, in contrast, have lost the expression of six Wnt ligands, i.e. Wnt1, 8a, 8b, 9b, 10a and 11.

Conclusion

Puripotent human H7 and mouse F9 embryonal cells express the genes for most of the Wnts and Frizzleds. In contrast, multipotent human mesenchymal cells are deficient in expression of Frizzled-8 and of 6 Wnt genes.  相似文献   

15.
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties.  相似文献   

16.
Lrp5/6 are crucial coreceptors for Wnt/β-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/β-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6−/− mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.  相似文献   

17.
The Wnt/β-catenin signaling pathway is a key regulator of bone homeostasis. Sclerostin act as an extracellular inhibitor of canonical Wnt signaling through high-affinity binding to the Wnt co-receptor LRP5/6. Disruption of the interaction between LRP5/6 and sclerostin has been recognized as a therapeutic target for osteoporosis. We identified a quinoxaline moiety as a new small-molecule inhibitor of the LRP5/6-sclerostin interaction through pharmacophore-based virtual screening, docking simulations, and in vitro assays. Structure-activity relationship studies and binding mode hypotheses were used to optimize the scaffold and yield the compound BMD4503-2, which recovered the downregulated activity of the Wnt/β-catenin signaling pathway by competitive binding to the LRP5/6-sclerostin complex. Overall, this study showed that the optimized structure-based drug design was a promising approach for the development of small-molecule inhibitors of the LRP5/6-sclerostin interaction. A novel scaffold offered considerable insights into the structural basis for binding to LRP5/6 and disruption of the sclerostin-mediated inhibition of Wnt signaling.  相似文献   

18.
19.
Skeletal muscle regeneration is mediated by satellite cells (SCs). Upon injury, SCs undergo self-renewal, proliferation, and differentiation into myoblasts followed by myoblast fusion to form new myofibers. We previously showed that the heparan sulfate (HS) 6-O-endosulfatases (Sulf1 and -2) repress FGF signaling to induce SC differentiation during muscle regeneration. Here, we identify a novel role of Sulfs in myoblast fusion using a skeletal muscle-specific Sulf double null (SulfSK-DN) mouse. Regenerating SulfSK-DN muscles exhibit reduced canonical Wnt signaling and elevated non-canonical Wnt signaling. In addition, we show that Sulfs are required to repress non-canonical Wnt signaling to promote myoblast fusion. Notably, skeletal muscle-relevant non-canonical Wnt ligands lack HS binding capacity, suggesting that Sulfs indirectly repress this pathway. Mechanistically, we show that Sulfs reduce the canonical Wnt-HS binding and regulate colocalization of the co-receptor LRP5 with caveolin3. Therefore, Sulfs may increase the bioavailability of canonical Wnts for Frizzled receptor and LRP5/6 interaction in lipid raft, which may in turn antagonize non-canonical Wnt signaling. Furthermore, changes in subcellular distribution of active focal adhesion kinase (FAK) are associated with the fusion defect of Sulf-deficient myoblasts and upon non-canonical Wnt treatment. Together, our findings uncover a critical role of Sulfs in myoblast fusion by promoting antagonizing canonical Wnt signaling activities against the noncanonical Wnt pathway during skeletal muscle regeneration.  相似文献   

20.
Wnt signaling through the canonical beta-catenin pathway plays essential roles in development and disease. Low-density-lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) in vertebrates, and their Drosophila ortholog Arrow, are single-span transmembrane proteins that are indispensable for Wnt/beta-catenin signaling, and are likely to act as Wnt co-receptors. This review highlights recent progress and unresolved issues in understanding the function and regulation of Arrow/Lrp5/Lrp6 in Wnt signaling. We discuss Arrow/Lrp5/Lrp6 interactions with Wnt and the Frizzled family of Wnt receptors, and with the intracellular beta-catenin degradation apparatus. We also discuss the regulation of Lrp5/Lrp6 by other extracellular ligands, and LRP5 mutations associated with familial osteoporosis and other disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号