首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A bacterial artificial chromosome (BAC) contig was constructed by chromosome walking, starting from the Hox genes of the silkworm, Bombyx mori. Bombyx orthologues of the labial (lab) and zerknült (zen) genes were newly identified. The size of the BAC contig containing the Hox gene cluster—except the lab and Hox 2 genes—was estimated to be more than 2 Mb. The Bombyx Hox cluster was mapped to linkage group (LG) 6. The lab gene was mapped on the same LG, but far apart from the cluster. Fluorescence in situ hybridization analysis confirmed that the major Hox gene cluster and lab were at different locations on the same chromosome in B. mori.Edited by M. Akam  相似文献   

2.
Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.  相似文献   

3.
The evolution of arthropod segmentation has been studied by comparing expression patterns of pair-rule and segment polarity genes in various species. In Drosophila, the formation and maintenance of the parasegmental boundaries depend on the interactions between the wingless (wg), engrailed (en) and hedgehog (hh) genes. Until now, the expression pattern of hh has not been analysed to such a great extent as en or wg. We report the cloning and expression analysis of hh genes from Euscorpius flavicaudis, a chelicerate, and Artemia franciscana, a branchiopod crustacean. Our data provide evidence that hh, being expressed in the posterior part of every segment, is a segment polarity gene in both organisms. Additional hh expression sites were observed in the rostrum and appendages of Euscorpius and in the gut of Artemia. From the available data on hh expression in various bilaterians, we review the various hypotheses on the evolution of hh function and we suggest an ancestral role of hh in proctodeum specification and gut formation.Edited by D. Tautz  相似文献   

4.
The large numbers of duplicated pairs of genes in zebrafish compared to their mammalian counterparts has lead to the notion that expression of zebrafish co-orthologous pairs in some cases can together describe the expression of their mammalian counterpart. Here, we explore this notion by identification and analysis of a second zebrafish ortholog of the mammalian Kit receptor tyrosine kinase (kitb). We show that in embryos, kitb is expressed in a non-overlapping pattern to that of kita, in the anterior ventral mesoderm, Rohon-beardRohon–Beard neurons, the otic vesicle, and trigeminal ganglia. The expression pattern of kita and kitb in zebrafish together approximates that of Kit in mouse, with the exception that neither zebrafish kit gene is expressed in primordial germ cells, a site of kit expression in the mouse embryo. In addition, zebrafish kita is expressed in a site of zebrafish primitive hematopoiesis but not required for blood development, and we fail to detect kitb expression in sites of zebrafish hematopoiesis. Thus, the expression and function of zebrafish kit genes cannot be described as a simple partition of the expression and function of mouse Kit. We discuss the possibility that these unaccounted for expression domains and functions are derived from more ancestral gene duplications and partitioning instead of the relatively recent teleost teleost-specific duplication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
The tantalus (tan) gene encodes a protein that interacts specifically with the Polycomb/trithorax group protein Additional sex combs (ASX). Both loss-of-function and gain-of-function mutations in tan cause tissue-specific defects in the eyes, wing veins and bristles of adult flies. As these defects are also typical for components of the Notch (N) signalling pathway, we wished to determine if TAN interacts with this pathway. Through careful examination of ectopic tan phenotypes, we find that TAN specifically disrupts all three major processes associated with the N signalling pathway (boundary formation, lateral inhibition, and lineage decisions). Furthermore, ectopic tan expression abolishes expression of two N target genes, wingless (wg) and cut, at the dorsal-ventral boundary of the wing. An interaction between tan and N was also observed using a genetic assay that previously detected interactions between tan and Asx. The previously observed ability of TAN to move between the cytoplasm and nucleus, and to associate with DNA, provides a potential mechanism for TAN to respond to N signalling.Edited by P. Simpson  相似文献   

6.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
In order to investigate the correlation of cell lineage, gene expression, and morphogenesis of uniramous and biramous limbs we studied limb formation in the thorax and pleon of the amphipod Orchestia cavimana and the isopod Porcellio scaber. We took advantage of the fact that in amphipod and isopod crustaceans—both Malacostraca—uniramous limbs evolved independently in the thorax whereas ancestral biramous limbs are formed in the pleon (abdomen). The gene Distal-less is expressed in the early limb buds as in other arthropods. Accordingly, it is likely to be responsible for the development of the proximodistal axis of the appendages. Double staining of Distal-less and Engrailed proteins suggests that Distal-less in the pleon of the amphipod Orchestia might not be under the control of the Wingless protein. Additionally, we studied axis formation of the uniramous and biramous limbs. In both species investigated, biramous limbs originate exclusively by the subdivision of the original limb bud. Both distal elements continuously express Distal-less. There is flexibility in the suppression of the development of additional branches in the crustacean limb. In the amphipod O. cavimana, uniramous thoracopods are formed by downregulation of Distal-less in the area where, in biramous limbs, the exopodites would occur. In contrast, this region never expresses Distal-less in the uniramous thoracopods of the isopod P. scaber. Our results suggest that the gene expression pattern is independent of the cell division pattern. Gene expression domains and morphogenesis of limbs and segments, on the other hand, show a good correlation.Edited by D. Tautz  相似文献   

8.
9.
We have isolated an amphioxus T-box gene that is orthologous to the two vertebrate genes, Tbx1 and Tbx10, and examined its expression pattern during embryonic and early larval development. AmphiTbx1/10 is first expressed in branchial arch endoderm and mesoderm of developing neurulae, and in a bilateral, segmented pattern in the ventral half of newly formed somites. Branchial expression is restricted to the first three branchial arches, and disappears completely by 4 days post fertilization. Ventral somitic expression is restricted to the first 10–12 somites, and is not observed in early larvae except in the most ventral mesoderm of the first three branchial arches. No expression can be detected by 4 days post fertilization. Integrating functional, phylogenetic and expression data from amphioxus and a variety of vertebrate model organisms, we have reconstructed the early evolutionary history of the Tbx1/10 subfamily of genes within the chordate lineage. We conclude that Tbx1/10-mediated branchial arch endoderm and mesoderm patterning functions predated the origin of neural crest, and that ventral somite specification functions predated the origin of vertebrate sclerotome, but that Tbx1 was later co-opted during the evolution of developmental programs regulating branchial neural crest and sclerotome migration.Edited by M. Akam  相似文献   

10.
To investigate the evolutionary history of mesoderm in the bilaterian lineage, we are studying mesoderm development in the polychaete annelid, Capitella sp. I, a representative lophotrochozoan. In this study, we focus on the Twist and Snail families as candidate mesodermal patterning genes and report the isolation and in situ expression patterns of two twist homologs (CapI-twt1 and CapI-twt2) and two snail homologs (CapI-sna1 and CapI-sna2) in Capitella sp. I. CapI-twt1 is expressed in a subset of mesoderm derivatives during larval development, while CapI-twt2 shows more general mesoderm expression at the same stages. Neither twist gene is detected before the completion of gastrulation. The two snail genes have very distinct expression patterns. At cleavage and early gastrula stages, CapI-sna1 is broadly expressed in precursors of all three germ layers and becomes restricted to cells around the closing blastopore during late gastrulation; CapI-sna2 expression is not detected at these stages. After gastrulation, both snail genes are expressed in the developing central nervous system (CNS) at stages when neural precursor cells are internalized, and CapI-sna1 is also expressed laterally within the segmental mesoderm. Based on the expression patterns in this study, we suggest a putative function for Capitella sp. I twist genes in mesoderm differentiation and for snail genes in regulating CNS development and general cell migration during gastrulation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Embryonic expression of a Zic homologue (Ttu-Zic) was examined in the oligochaete annelid Tubifex tubifex. The body plan of T. tubifex is characterized by obvious segmentation in the ectoderm and mesoderm. Ttu-Zic expression is detected in the mesodermal germ band and a subset of micromere descendants. Ttu-Zic is transiently expressed in primary m-blast cells (i.e., founder cells of mesodermal segments) as early as the time of their birth from M teloblasts. During its development, each mesodermal segment experiences two additional phases of Ttu-Zic expression. Ttu-Zic expression in micromere descendants is seen on the anterior surfaces of embryos undergoing teloblastogenesis; subsequently, these cells proliferate to form bilateral clusters, which then become internalized. Finally, clusters of Ttu-Zic-expressing cells are found in the center of the prostomium, corresponding to the cerebral ganglion. The Ttu-Zic expression profile in the early embryogenesis of T. tubifex may be homologous to those of evolutionarily distant animals.  相似文献   

12.
The SCARECROW (SCR) gene in Arabidopsis is required for asymmetric cell divisions responsible for ground tissue formation in the root and shoot. Previously, we reported that Zea mays SCARECROW (ZmSCR) is the likely maize ortholog of SCR. Here we describe conserved and divergent aspects of ZmSCR. Its ability to complement the Arabidopsis scr mutant phenotype suggests conservation of function, yet its expression pattern during embryogenesis and in the shoot system indicates divergence. ZmSCR expression was detected early during embryogenesis and localized to the endodermal lineage in the root, showing a gradual regionalization of expression. Expression of ZmSCR appeared to be analogous to that of SCR during leaf formation. However, its absence from the maize shoot meristem and its early expression pattern during embryogenesis suggest a diversification of ZmSCR in the patterning processes in maize. To further investigate the evolutionary relationship of SCR and ZmSCR, we performed a phylogenetic analysis using Arabidopsis, rice and maize SCARECROW-LIKE genes (SCLs). We found SCL23 to be the most closely related to SCR in both eudicots and monocots, suggesting that a gene duplication resulting in SCR and SCL23 predates the divergence of dicots and monocots. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Control of organ size is the product of coordinated cell division and expansion. In plants where one of these pathways is perturbed, organ size is often unaffected as compensation mechanisms are brought into play. The number of founder cells in organ primordia, dividing cells, and the period of cell proliferation determine cell number in lateral organs. We have identified the Antirrhinum FORMOSA (FO) gene as a specific regulator of floral size. Analysis of cell size and number in the fo mutant, which has increased flower size, indicates that FO is an organ-specific inhibitor of cell division and activator of cell expansion. Increased cell number in fo floral organs correlated with upregulation of genes involved in the cell cycle. In Arabidopsis the AINTEGUMENTA (ANT) gene promotes cell division. In the fo mutant increased cell number also correlates with upregulation of an Antirrhinum ANT-like gene (Am-ANT) in inflorescences that is very closely related to ANT and shares a similar expression pattern, suggesting that they may be functional equivalents. Increased cell proliferation is thought to be compensated for by reduced cell expansion to maintain organ size. In Arabidopsis petal cell expansion is inhibited by the BIGPETAL (BPE) gene, and in the fo mutant reduced cell size corresponded to upregulation of an Antirrhinum BPE-like gene (Am-BPE). Our data suggest that FO inhibits cell proliferation by negatively regulating Am-ANT, and acts upstream of Am-BPE to coordinate floral organ size. This demonstrates that organ size is modulated by the organ-specific control of both general and local gene networks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A novel non-Hox Antp-class gene (BarBsh-Hb) was isolated from the marine sponge Halichondria sp. This gene shares high sequence identity with eumetazoan genes from the Bsh and Bar gene families and can be distinguished from other non-Hox Antp-class genes by diagnostic residues. We also present an alignment of all known (full-length) poriferan non-Hox Antp-class genes. Maximum likelihood methods were employed to estimate phylogenetic relationships among non-Hox genes and BarBsh-Hb. We employed RT-PCR techniques to look at expression across different developmental stages (larval to rhagon). BarBsh-Hb product was present in newly released larvae, but expression was not detected 8–16 h post-release. Expression of BarBsh-Hb was detected in later-stage (>16 h post-release), free-swimming larvae until they settled and attached to the substratum, after which expression was down-regulated. In a separate set of experiments, low levels of expression were observed in normal adult tissue and disaggregated adult tissue, but BarBsh-Hb expression increased during tissue re-aggregation. These data increase the number of non-Hox homeobox genes identified in sponges and provide evidence of regulation of this non-Hox gene during sponge development. While the Bar and Bsh genes play important roles in the development of nervous tissue—especially visual systems—in metazoans, the specific role(s) BarBsh-Hb play(s) in sponge development is unclear and deserves greater attention.Edited by C. Desplan  相似文献   

15.
The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze–thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants.  相似文献   

16.
Demuth JP  Wade MJ 《Genetica》2007,129(1):37-43
Population genetic theory predicts that maternal effect genes will evolve differently than genes expressed in both sexes because selection is only half as effective on autosomal genes expressed in one sex but not the other. Here, we use sequences of the tandem gene duplicates, bicoid (bcd) and zerknüllt (zen), to test the prediction that, with similar coefficients of purifying selection, a maternal effect gene evolves more rapidly than a zygotic gene because of this reduction in selective constraint. We find that the maternal effect gene, bcd, is evolving more rapidly than zygotically expressed, zen, providing the first direct confirmation of this prediction of maternal effect theory from molecular evidence. Our results extend current explanations for the accelerated rate of bcd evolution by providing an evolutionary mechanism, relaxed selective constraint, that allows bcd the evolutionary flexibility to escape the typical functional constraints of early developmental genes. We discuss general implications of our findings for the role of maternal effect genes in early developmental patterning.  相似文献   

17.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

18.
19.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号