首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Liu T  Zhang J  Wang M  Wang Z  Li G  Qu L  Wang G 《Plant cell reports》2007,26(12):2091-2099
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
In higher plants, the process of embryogenesis establishes the plant body plan (body axes). On the basis of positional information specified by the body axes, the shoot apical meristem (SAM) and root apical meristem (RAM) differentiate at fixed positions early in embryogenesis. After germination, SAM and RAM are responsible for the development of the above-ground and below-ground parts, respectively, of the plant. Because of the importance of SAM function in plant development, the mechanisms of SAM formation during embryogenesis and of SAM maintenance and function in post-embryonic development are priority questions in plant developmental biology. Recent advances in molecular and genetic analysis of morphogenetic mutations in Arabidopsis have revealed several components required for SAM formation, maintenance and function. Although these processes are fundamental to the life cycle of every plant, conservation of the components does not explain the diversity of plant morphologies. Rice is used as a model plant of the grass family and of monocots because of the progress in research infrastructure, especially the collection of unique mutations and genome information. In comparison with the dicot Arabidopsis, rice has many unique organs or processes of development. This review summarizes what is known of the processes of SAM formation, maintenance and function in rice.  相似文献   

4.
5.
Previously, we characterized 92 Arabidopsis genes (AtSFLs) similar to the S-locus F-box genes involved in S-RNase-based self-incompatibility and found that they likely play diverse roles in Arabidopsis. In this study, we investigated the role of one of these genes, CEGENDUO (CEG, AtSFL61), in the lateral root formation. A T-DNA insertion in CEG led to an increased lateral root production, which was complemented by transformation of the wild-type gene. Its downregulation by RNAi also produced more lateral roots in transformed Arabidopsis plants whereas its overexpression generated less lateral roots compared to wild-type, indicating that CEG acts as a negative regulator for the lateral root formation. It was found that CEG was expressed abundantly in vascular tissues of the primary root, but not in newly formed lateral root primordia and the root meristem, and induced by exogenous auxin NAA (α-naphthalene acetic acid). In addition, the ceg mutant was hyposensitive to NAA, IAA (indole-3-acetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), as well as the auxin transport inhibitor TIBA (3,3,5-triiodobenzoic acid), showing that CEG is an auxin-inducible gene. Taken together, our results show that CEG is a novel F-box protein negatively regulating the auxin-mediated lateral root formation in Arabidopsis. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
The male component of the self-incompatibility response in Brassica has recently been shown to be encoded by the S locus cysteine-rich gene (SCR). SCR is related, at the sequence level, to the pollen coat protein (PCP) gene family whose members encode small, cysteine-rich proteins located in the proteo-lipidic surface layer (tryphine) of Brassica pollen grains. Here we show that the Arabidopsis genome includes two large gene families with homology to SCR and to the PCP gene family, respectively. These genes are poorly predicted by gene-identification algorithms and, with few exceptions, have been missed in previous annotations. Based on sequence comparison and an analysis of the expression patterns of several members of each family, we discuss the possible functions of these genes. In particular, we consider the possibility that SCR-related genes in Arabidopsis may encode ligands for the S gene family of receptor-like kinases in this species.  相似文献   

7.
8.
Gaj MD  Zhang S  Harada JJ  Lemaux PG 《Planta》2005,222(6):977-988
The capacity for somatic embryogenesis was studied in lec1, lec2 and fus3 mutants of Arabidopsis thaliana (L.) Heynh. It was found that contrary to the response of wild-type cultures, which produced somatic embryos via an efficient, direct process (65–94% of responding explants), lec mutants were strongly impaired in their embryogenic response. Cultures of the mutants formed somatic embryos at a low frequency, ranging from 0.0 to 3.9%. Moreover, somatic embryos were formed from callus tissue through an indirect route in the lec mutants. Total repression of embryogenic potential was observed in double (lec1 lec2, lec1 fus3, lec2 fus3) and triple (fus3 lec1 lec2) mutants. Additionally, mutants were found to exhibit efficient shoot regenerability via organogenesis from root explants. These results provide evidence that, besides their key role in controlling many different aspects of Arabidopsis zygotic embryogenesis, LEC/FUS genes are also essential for in vitro somatic embryogenesis induction. Furthermore, temporal and spatial patterns of auxin distribution during somatic embryogenesis induction were analyzed using transgenic Arabidopsis plants expressing GUS driven by the DR5 promoter. Analysis of data indicated auxin accumulation was rapid in all tissues of the explants of both wild type and the lec2-1 mutant, cultured on somatic embryogenesis induction medium containing 2,4-D. This observation suggests that loss of embryogenic potential in the lec2 mutant in vitro is not related to the distribution of exogenously applied auxin and LEC genes likely function downstream in auxin-induced somatic embryogenesis.  相似文献   

9.
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5′ flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50–60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3–15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15–35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Miller TA  Muslin EH  Dorweiler JE 《Planta》2008,227(6):1377-1388
Maize (Zea mays ssp. mays L.) was domesticated from teosinte (Z. mays L. ssp. parviglumis Iltis & Doebley), a plant requiring short day photoperiods to flower. While photoperiod sensitive landraces of maize exist, post-domestication breeding included efforts to grow maize in a broad range of latitudes. Thus, modern maize is often characterized as day-neutral because time to flower is relatively unaffected by photoperiod. We report the first identification of maize constans of Zea mays1 (conz1), a gene with extensive sequence homology to photoperiod genes CONSTANS (CO) in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and Heading date1 (Hd1) in rice (Oryza sativa L.). conz1 maps to a syntenous chromosomal location relative to Hd1. Additionally, conz1 and two maize homologs of another photoperiod gene exhibit diurnal expression patterns notably similar to their Arabidopsis and rice homologs. The expression pattern of conz1 in long days is distinct from that observed in short days, suggesting that maize is able to discern variations in photoperiod and respond with differential expression of conz1. We offer models to reconcile the differential expression of conz1 with respect to the photoperiod insensitivity exhibited by temperate inbreds. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sequence data from this article can be found in the GenBank () data library under the following accession numbers: conz1 mRNA: EU098139, EU098140; gigz1A: BK006299; gigz1B: BK006298.  相似文献   

11.
The Anaphase Promoting Complex (APC) controls CDK activity by targeting the ubiquitin-dependent proteolysis of S-phase and mitosis-promoting cyclins. Here, we report that the ectopic expression of the Arabidopsis CDC27a, an APC subunit, accelerates plant growth and results in plants with increased biomass production. CDC27a overexpression was associated to apical meristem restructuration, protoplasts with higher 3H-thimidine incorporation and altered cell-cycle marker expression. Total protein extracts immunoprecipitated with a CDC27a antibody showed ubiquitin ligase activity, indicating that the Arabidopsis CDC27a gets incorporated into APC complexes. These results indicate a role of AtCDC27a in regulation of plant growth and raise the possibility that the activity of the APC and the rates of plant cell division could be regulated by the concentration of the CDC27a subunit. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Cristian Antonio Rojas and Nubia Barbosa Eloy contributed equally to this work.  相似文献   

12.
In common with most Old World Gesneriaceae; Streptocarpus Lindl. shows anisocotylous growth, i.e., the continuous growth of one cotyledon after germination. Linked to this phenomenon is an unorthodox behaviour of the shoot apical meristem (SAM) that determines the growth pattern of acaulescent species (subgenus Streptocarpus). In contrast caulescent species develop a conventional central post-embryonic SAM (mainly subgenus Streptocarpella). We used S. rexii Lindl. as a model to investigate anisocotyly and meristem initiation in Streptocarpus by using histological techniques and analyses of the expression pattern of the meristematic marker SrSTM1 during ontogeny. In contrast to Arabidopsis thaliana (L.) Heynh., S. rexii does not establish a SAM during embryogenesis, and the first evidence of a SAM-like structure occurs during post-embryonic development on the axis (the petiolode) between the two cotyledons. The expression pattern of SrSTM1 suggests a function in maintaining cell division activity in the cotyledons before becoming localized in the basal meristem, initially at the proximal ends of both cotyledons, later at the base of the continuously growing macrocotyledon, and the groove meristem on the petiolode. The latter is equivalent to a displaced SAM seemingly originating de novo under the influence of endogenous factors. Applied cytokinin retains SrSTM1expression in the small cotyledon, thus promoting isocotyly and re-establishment of a central post-embryonic SAM. Hormone-dependent delocalization of the process of meristem development could underlie anisocotyly and the unorthodox SAM formation in Streptocarpus. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Changes in gene expression contribute to reproductive isolation of species, adaptation, and development and may impact the genetic fate of duplicated genes. African clawed frogs (genus Xenopus) offer a useful model for examining regulatory evolution, particularly after gene duplication, because species in this genus are polyploid. Additionally, these species can produce viable hybrids, and expression divergence between coexpressed species-specific alleles in hybrids can be attributed exclusively to cis-acting mechanisms. Here we have explored expression divergence of a duplicated heterodimer composed of the recombination activating genes 1 and 2 (RAG1 and RAG2). Previous work identified a phylogenetically biased pattern of pseudogenization of RAG1 wherein one duplicate—RAG1β—was more likely to become a pseudogene than the other one—RAG1α. In this study we show that ancestral expression divergence between these duplicates could account for this. Using comparative data we demonstrate that regulatory divergence between species and between duplicated genes varies significantly across tissue types. These results have implications for understanding of variables that influence pseudogenization of duplicated genes generated by polyploidization, and for interpretation of the relative contributions of cis versus trans mechanisms to expression divergence at the cellular level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
该研究采用同源克隆策略,从甜荞中克隆到1个柠檬酸转运蛋白基因FeFRD3(GenBank登录号为MG462907)。FeFRD3基因含一个1 554bp开放阅读框,编码517个氨基酸,预测蛋白分子量为55.83kD,等电点为8.48。生物信息学分析显示,FeFRD3蛋白含有8个跨膜区,定位于质膜和液泡膜上。蛋白序列分析结果表明,FeFRD3与拟南芥、大豆和水稻的FRD3同源蛋白有较高的序列一致性。系统进化树分析表明,FeFRD3属于具有将铁由根向地上部位长距离转运功能的柠檬酸转运蛋白,且与拟南芥AtFRD3亲缘关系最近。qRT-PCR分析结果表明,FeFRD3基因在甜荞根、茎、叶和种子中均有表达,但在根中的表达量最高,在种子中的表达量最低;缺铁胁迫没有影响FeFRD3基因在根中的表达,但高铁胁迫明显诱导了该基因在根中的表达。研究结果为进一步深入研究FeFRD3基因在甜荞铁长距离转运中的功能奠定了基础。  相似文献   

16.
17.
Although the introduction of foreign genes into Arabidopsis has become routine, the production of transgenic Arabidopsis plants still requires several months. A transgene expression system (TES) has been developed that allows characterization of gene expression patterns and the effects of foreign genes in the Arabidopsis root in 2–4 weeks. The method is based on regeneration of stably transformed roots directly from callus tissue. TES has been used to study the expression of the SCARECROW gene, which is involved in establishing radial patterning in the root. The 2.5 kb region directly upstream of the SCARECROW coding region was found to be sufficient to confer cell-type specific expression. Furthermore, this promoter is active in the scr mutant background, indicating that factors essential for cell-type specific expression are present even in the absence of correct radial patterning. Finally, TES was used to demonstrate that the SCARECROW gene under control of this promoter complements the root organization defect of the scr mutant. These experiments demonstrate the utility of the TES system for studying gene expression in roots in wild-type and mutant backgrounds and for molecular complementation of root mutant phenotypes. It is possible that the method will also be applicable to other organs.  相似文献   

18.
Classic plant tissue culture experiments have shown that exposure of cell culture to a high auxin to cytokinin ratio promotes root formation and a low auxin to cytokinin ratio leads to shoot regeneration. It has been widely accepted that auxin and cytokinin play an antagonistic role in the control of organ identities during organogenesis in vitro. Since the auxin level is highly elevated in the shoot meristem tissues, it is unclear how a low auxin to cytokinin ratio promotes the regeneration of shoots. To identify genes mediating the cytokinin and auxin interaction during organogenesis in vitro, three allelic mutants that display root instead of shoot regeneration in response to a low auxin to cytokinin ratio are identified using a forward genetic approach in Arabidopsis. Molecular characterization shows that the mutations disrupt the AUX1 gene, which has been reported to regulate auxin influx in plants. Meanwhile, we find that cytokinin substantially stimulates auxin accumulation and redistribution in calli and some specific tissues of Arabidopsis seedlings. In the aux1 mutants, the cytokinin regulated auxin accumulation and redistribution is substantially reduced in both calli and specific tissues of young seedlings. Our results suggest that auxin elevation and other changes stimulated by cytokinin, instead of low auxin or exogenous auxin directly applied, is essential for shoot regeneration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Previous studies have shown widespread conservation of gene expression levels between species of the Drosophila melanogaster subgroup as well as a positive correlation between coding sequence divergence and expression level divergence between species. Meanwhile, large-scale misregulation of gene expression level has been described in interspecific sterile hybrids between D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Using data from gene expression analysis involving D. simulans, D. melanogaster, and their hybrids, we observed a significant positive correlation between protein sequence divergence and gene expression differences between hybrids and their parental species. Furthermore, we demonstrate that underexpressed misregulated genes in hybrids are evolving more rapidly at the protein sequence level than nonmisregulated genes or overexpressed misregulated genes, highlighting the possible effects of sexual and natural selection as male-biased genes and nonessential genes are the principal gene categories affected by interspecific hybrid misregulation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Carlo G. Artieri and Wilfried Haerty contributed equally to this publication.  相似文献   

20.
Somatic embryogenesis (SE) is induced in vitro in Medicago truncatula 2HA by auxin and cytokinin but rarely in wild type Jemalong. The putative WUSCHEL (MtWUS), CLAVATA3 (MtCLV3) and the WUSCHEL-related homeobox gene WOX5 (MtWOX5) were investigated in M. truncatula (Mt) and identified by the similarity to Arabidopsis WUS, CLV3 and WOX5 in amino acid sequence, phylogeny and in planta and in vitro expression patterns. MtWUS was induced throughout embryogenic cultures by cytokinin after 24–48 h and maximum expression occurred after 1 week, which coincides with the induction of totipotent stem cells. During this period there was no MtCLV3 expression to suppress MtWUS. MtWUS expression, as illustrated by promoter-GUS studies, subsequently localised to the embryo, and there was then the onset of MtCLV3 expression. This suggests that the expression of the putative MtCLV3 coincides with the WUS-CLAVATA feedback loop becoming operational. RNAi studies showed that MtWUS expression is essential for callus and somatic embryo production. Based on the presence of MtWUS promoter binding sites, MtWUS may be required for the induction of MtSERF1, postulated to have a key role in the signalling required for SE induced in 2HA. MtWOX5 expressed in auxin-induced root primordia and root meristems and appears to be involved in pluripotent stem cell induction. The evidence is discussed that the homeobox genes MtWUS and MtWOX5 are “hijacked” for stem cell induction, which is key to somatic embryo and de novo root induction. In relation to SE, a role for WUS in the signalling involved in induction is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号