首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The black bear population of the White River National Wildlife Refuge (NWR) is adjacent to populations of black bear in Louisiana (Urusus americanus luteolus) which are listed as threatened under the U.S. Endangered Species Act. Wildlife management plans can pose restrictions on bear harvests and timber extraction; therefore the management plan for the White River NWR is sensitive to subspecific classification of its bear population. The objective of this study was to analyze genetic variation in the White River NWR and seven adjacent populations of black bears to assess the subspecific affinity of the White River NWR population. Here we report the variation at seven microsatellite DNA loci among eight black bear populations. The patterns of genetic variation gave strong support for distinguishing a southern group of black bears comprised of the White River, Arkansas; Tensas River, Louisiana; Upper Atchafalaya, Louisiana; Lower Atchafalaya, Louisiana; and Alabama/Mississippi populations. Phylogenetic analysis of individual variation suggested that historical black bear introductions into Arkansas and Louisiana affected gene pools of certain southern receiving populations, but did not significantly change interpopulation relatedness. Phylogenetic inferences at both the population and individual levels support the hypothesis that the White River NWR population of black bears belongs to the U. a. luteolus subspecies.  相似文献   

2.
Saussurea involucrata (Asteraceae) is a medicinal and second-degree national priority endangered plant that is mainly distributed in the high latitude region of the western Tianshan Mountains. The population is fragmented and isolated, and extensive human impact merits a suitable and specific conservation strategy, which can be compiled based on the genetic diversity, population structure, and demographic history. Phylogeographic studies were conducted on a total of five natural populations and 150 individuals were sampled. Data from three cpDNA intergenic spacer regions (trnL-F, matK, and ndhF-rpl32) and nrDNA ITS sequences showed that twelve haplotypes in cpDNA and five haplotypes in nrDNA indicated high genetic diversity among populations sampled (H T?=?0.820 and 0.756) and within populations sampled (H S?=?0.792 and 0.721). Additionally, the high genetic diversity did not mirror genetic structure in either cpDNA (F ST?=?0.03153, G ST?>?N ST, p?<?0.05) or nrDNA (F ST?=?0.03666, meaningless G ST and N ST). Two groups (north and south) were determined for a SAMOVA analysis. Based on this analysis, the demographic history was conducted with a Bayesian Skyline Plot and Isolation with Migration analysis, which showed sustainable and stable extension without a marked bottleneck. Divergence time was indicated at c. 6.25 Mya (90%HPD: 15.30–0.22 Mya) in the Miocene, which is consistent with the formation of the Kelasu section of Tianshan. The southern populations in the Bayanbulak and Gonglu regions require additional attention and transplanting would be an effective way to restore rare cpDNA haplotypes, increase effective population size, and migration rate. Our results suggested that in situ conservation of S. involucrata in western Tianshan should be the main strategy for protection and recovery of the species.  相似文献   

3.
Pelagic larval dispersal habits influence the population genetic structure of marine mollusk organisms via gene flow. The genetic information of the clam Gomphina aequilatera (short larval stage, 10 days) which is ecologically and economically important in the China coast is unknown. To determine the influence of planktonic larval duration on the genetic structure of G. aequilatera. Mitochondrial markers, cytochrome oxidase subunit i (COI) and 12S ribosomal RNA (12S rRNA), were used to investigate the population structure of wild G. aequilatera specimens from four China Sea coastal locations (Zhoushan, Nanji Island, Zhangpu and Beihai). Partial COI (685 bp) and 12S rRNA (350 bp) sequences were determined. High level and significant FST values were obtained among the different localities, based on either COI (FST?=?0.100–0.444, P?<?0.05) or 12S rRNA (FST?=?0.193–0.742, P?<?0.05), indicating a high degree of genetic differentiation among the populations. The pairwise Nm between Beihai and Zhoushan for COI was 0.626 and the other four pairwise Nm values were >?1, indicating extensive gene flow among them. The 12S rRNA showed the same pattern. AMOVA test results for COI and 12S rRNA indicated major genetic variation within the populations: 77.96% within and 22.04% among the populations for COI, 55.73% within and 44.27% among the populations for 12S rRNA. A median-joining network suggested obvious genetic differentiation between the Zhoushan and Beihai populations. This study revealed the extant population genetic structure of G. aequilatera and showed a strong population structure in a species with a short planktonic larval stage.  相似文献   

4.
Oceanic archipelagos are typically rich in endemic taxa, because they offer ideal conditions for diversification and speciation in isolation. One of the most remarkable evolutionary radiations on the Canary Islands comprises the 16 species included in Limonium subsection Nobiles, all of which are subject to diverse threats, and legally protected. Since many of them are single-island endemics limited to one or a few populations, there exists a risk that a loss of genetic variation might limit their long-term survival. In this study, we used eight newly developed microsatellite markers to characterize the levels of genetic variation and inbreeding in L. macrophyllum, a species endemic to the North-east of Tenerife that belongs to Limonium subsection Nobiles. We detected generally low levels of genetic variation over all populations (H T = 0.363), and substantial differentiation among populations (F ST = 0.188; R ST = 0.186) coupled with a negligible degree of inbreeding (F?=?0.042). Obligate outcrossing may have maintained L. macrophyllum relatively unaffected by inbreeding despite the species’ limited dispersal ability and the genetic bottlenecks likely caused by a prolonged history of grazing. Although several factors still constitute a risk for the conservation of L. macrophyllum, the lack of inbreeding and the recent positive demographic trends observed in the populations of this species are factors that favour its future persistence.  相似文献   

5.
Habitat fragmentation due to anthropogenic activities is the major cause of biodiversity loss. Endemic and narrowly distributed species are the most susceptible to habitat degradation. Penstemon scariosus is one of many species whose natural habitat is vulnerable to industrialization. All varieties of P. scariosus (P. scariosus var. albifluvis, P. scariosus var. cyanomontanus, P. scariosus var. garrettii, P. scariosus var. scariosus) have small distribution ranges, but only P. scariosus var. albifluvis is being considered for listing under the Endangered Species Act. We used eight microsatellites or simple sequence repeats (SSRs) loci and two amplified fragment length polymorphism (AFLP) primer combinations to investigate the population genetic structure and diversity of P. scariosus varieties. Moreover, we compared the utility of the two marker systems in conservation genetics and estimated an appropriate sample size in population genetic studies. Genetic differentiation among populations based on Fst ranged from low to moderate (Fst?=?0.056–0.157) and from moderate to high when estimated with Des (Des?=?0.15–0.32). Also, AMOVA analysis shows that most of the genetic variation is within populations. Inbreeding coefficients (Fis) were high in all varieties (0.20–0.56). The Bayesian analysis, STRUCTURE, identified three clusters from SSR data and four clusters from AFLPs. Clusters were not consistent between marker systems and did not represent the current taxonomy. MEMGENE revealed that a high proportion of the genetic variation is due to geographic distance (R2?=?0.38, P?=?0.001). Comparing the genetic measurements from AFLPs and SSRs, we found that AFLP results were more accurate than SSR results across sample size when populations were larger than 25 individuals. As sample size decreases, the estimates become less stable in both AFLP and SSR datasets. Finally, this study provides insight into the population genetic structure of these varieties, which could be used in conservation efforts.  相似文献   

6.
Naturally rare species have a higher probability of stochastic extinction due to genetic, demographic, or environmental hazards; human disturbance may intensify these threats. Rare species may therefore be in need of short-term intervention to survive. The ecosystem with the second highest biodiversity in Brazil, the Cerrado, is suffering from fragmentation and threats to its flora. Dimorphandra wilsonii, a 30-m tall endemic tree of the Brazilian Cerrado, is listed as critically endangered; only 21 adult trees have been identified. We carried out mating system and pollen flow analyses to understand the current gene flow and limitations in the reproduction of D. wilsonii. With seven fluorescently labelled microsatellite primers, we genotyped 20 adult trees and 269 progeny from 13 mother trees. D. wilsonii displayed low levels of genetic diversity; bottleneck events are likely to have occurred (H e ?=?0.60 and 0.29; H o ?=?0.71 and 0.33, for adults and progeny, respectively). This species is predominantly outcrossing (t m ?=?0.88), with some selfing (1-t m ?=?0.12), as well as crossing between related individuals (t m -t s ?=?0.11). None of the studied trees was reproductively isolated; a high proportion of pollen (55 %) came from trees yet to be discovered. Two genetic clusters (Northern and Southern) were identified, with high values of genetic divergence among the Southern sites. Planting of seedlings and monitoring of seed dispersion in order to maintain the genetic diversity and genetic structure of D. wilsonii are strategies that may ensure the continuation of D. wilsonii, but this species does not seem to require reproductive intervention to remain viable.  相似文献   

7.
Codominant marker systems are better suited to analyze population structure and assess the source of an individual in admixture analyses. Currently, there is no codominant marker system using microsatellites developed for the sea sandwort, Honckenya peploides (L.) Ehrh., an early colonizer in island systems. We developed and characterized novel microsatellite loci from H. peploides, using reads collected from whole genome shotgun sequencing on a 454 platform. The combined output from two shotgun runs yielded a total of 62,669 reads, from which 58 loci were screened. We identified 12 polymorphic loci that amplified reliably and exhibited disomic inheritance. Microsatellite data were collected and characterized for the 12 polymorphic loci in two Alaskan populations of H. peploides: Fossil Beach, Kodiak Island (n?=?32) and Egg Bay, Atka Island (n?=?29). The Atka population exhibited a slightly higher average number of alleles (3.9) and observed heterozygosity (0.483) than the Kodiak population (3.3 and 0.347, respectively). The overall probability of identity values for both populations was PID?=?2.892e?6 and PIDsib?=?3.361e?3. We also screened the 12 polymorphic loci in Wilhelmsia physodes (Fisch. ex Ser.) McNeill, the most closely related species to H. peploides, and only one locus was polymorphic. These microsatellite markers will allow future investigations into population genetic and colonization patterns of the beach dune ruderal H. peploides on new and recently disturbed islands.  相似文献   

8.
Common reed, Phragmites australis (Cav.) Trin. Ex Steud., is the dominant emergent vegetation in the lower Mississippi River Delta (MRD), Louisiana, USA and is comprised primarily of introduced lineages of different phylogeographic origins. Dense stands of P. australis are important for protecting marsh soils from wave action and storm surges. In the Fall of 2016, while investigating symptoms of die-back of Phragmites stands in the lower marsh, a non-native scale was found infesting affected stands in high densities. Identified as Nipponaclerda biwakoensis (Kuwana) (Hemiptera: Aclerdidae), the scale was well established across the lower MRD. This report represents the first recorded population of Nipponaclerda biwakoensis in North America. Intriguingly, there are noticeable differences in die-back symptoms and in scale densities among different lineages of Phragmites in the MRD, with stands of the well-known European invasive lineage appearing healthier and having lower scale densities than other Phragmites lineages. Given its apparent relationship with the die-back syndrome, the scale may have serious implications for the health and stability of Phragmites marsh communities across coastal Louisiana. Efforts are currently underway to investigate the role of the scale and other abiotic stressors in the die-backs and potential management solutions.  相似文献   

9.
Analysis of genetic datasets can be particularly useful in providing guidelines for conservation management of understudied species targeted by commercial activities. Here we used population genetic approaches to inform on the conservation status of the Neotropical long-nose pirá catfish, Conorhynchos conirostris. Pirá is a large migratory fish endemic to the São Francisco River Basin (SFRB). It is an evolutionarily divergent and relict species, being the sole representative of an incertae sedis family. The species is considered locally extinct in the upper and lower SFRB, listed as vulnerable on the IUCN Red List and as endangered on the Brazilian Red List (ICMBIO). Fishing prohibition has received severe criticism from middle SFRB fisheries that claim that this understudied species is relatively abundant in that region. We used information from 13 microsatellite markers and COI mitochondrial sequences to clarify the genetic diversity of this enigmatic species in the middle SFRB, to estimate contemporary effective population size (Ne), and to assess its conservation status. Results from bottleneck analyses indicated that the species has experienced recent reductions in population size, which is consistent with small estimates of contemporary Ne. The predicted amount of heterozygosity loss (Ht) in t generations ranged from 0.1152 (for an estimated Ne of 26.4; t?=?100) to 0.7573 (for an estimated Ne of 169.9; t?=?10). Our study supports the conservation status proposed by the ICMBIO to the remaining pirá population. Moreover, we highlight the need for demographic data and the re-assessment of the current IUCN classification for this evolutionary relict lineage.  相似文献   

10.
Efforts to mitigate amphibian declines are hindered by a lack of information about basic aspects of their biology and demography. The effective to census population size ratio (N e /N c ) is one of the most important parameters for the management of wildlife populations because it combines information on population abundance and genetic diversity and helps predict population viability in the long term. Few studies have calculated this ratio in amphibians, which sometimes show low ratios, associated with a higher extinction risk. Here we integrate field-based (capture-mark-recapture studies, egg string counts) and molecular approaches (estimation of the effective number of breeders (N b ) and the effective population size (N e ) based on genotypes from larval cohorts and candidate parents) to produce the first estimates of the N e /N c and N b /N c ratios in two amphibians, the Iberian ribbed newt Pleurodeles waltl and the western spadefoot Pelobates cultripes. Additionally, we investigate sex-biased dispersal in both species based on direct (field observations) and indirect (genetic) evidence. Both species showed similar ratios, slightly lower in Pleurodeles (0.21–0.24) than in Pelobates (0.25–0.30). Observed displacement rates were low in both species (P. waltl?=?0.51%; P. cultripes?=?1.23%). We found no evidence for sex-biased dispersal in P. cultripes, but both direct and indirect evidences suggest a tendency for female-biased dispersal in P. waltl. We discuss differences in the genetic estimates of N e and N b provided by three inference methods and the implications of our findings for the management of these species, characteristic of Mediterranean wetlands in the Iberian Peninsula and listed as Near Threatened.  相似文献   

11.
Understanding patterns of genetic diversity of plants is important in guiding conservation programs. The aim of our study was to characterize genetic diversity in Afzelia quanzensis, an economically important African tree species. We genotyped 192 individuals at 10 nuclear microsatellite loci. Samples were collected from nine sites in Zimbabwe, five in the north and four in the south, separated by a mountain range, the Kalahari-Zimbabwe axis. Overall, genetic diversity was relatively low across all sites (expected heterozygosity (H E)?=?0.452, mean number of alleles (A)?=?4.367, allelic richness (A R)?=?2.917, effective number of alleles (A E)?=?2.208, and private allelic richness (PAR)?=?0.197). Genetic diversity estimates, H E, A, A R, and PAR, were not significantly different between northern and southern sites. Allelic richness was significantly higher in southern sites. Significant population differentiation was observed among all sites (F ST ?=?0.0936, G′ ST ?=?0.1982, G ST ?=?0.1001, D JOST?=?0.0598). STRUCTURE analysis and principal components analysis identified two gene pools, one predominantly made up of southern individuals, and the other of northern individuals. A Monmonier’s function detected a genetic barrier that coincided with the Kalahari-Zimbabwe axis. The relatively low level of genetic diversity in A. quanzensis may reduce adaptability and limit future evolutionary responses. All sites should be monitored for deleterious effects of low genetic diversity, and genetic resource management should take into consideration the existence of the distinct gene pools to capture the entire extant genetic variation.  相似文献   

12.
Vertebrate populations at the periphery of their range can show pronounced genetic drift and isolation, and therefore offer unique challenges for conservation and management. These populations are often candidates for management actions such as translocations that are designed to improve demographic and genetic integrity. This is particularly true of coldwater species like brook trout (Salvelinus fontinalis), whose numbers have declined greatly across its historic range. At the southern margin, remnant wild populations persist in isolated headwater streams, and many have a history of receiving translocated individuals through either stocking of hatchery reared fish, relocation of wild fish, or both during restoration attempts. To determine current genetic integrity and resolve the genetic effects of past management actions for brook trout populations in SC, USA, we genetically assessed all 18 documented remaining brook trout populations along with individuals acquired from six hatcheries with recorded stocking events in SC. Our results indicated that six of the 18 streams showed signs of hatchery admixture (range 57–97%) and restored patches retained genetic signatures from multiple source populations. Populations had among the lowest genetic diversity (min average HE?=?0.147) and effective number of breeders (mean Nb?=?31.2) estimates observed throughout the native brook trout range. Populations were highly differentiated (mean pair-wise FST?=?0.396), and substantial genetic divergence was evident across major river drainages (max pair-wise FST?=?0.773). The lowest local genetic diversity and highest genetic differentiation ever reported for this species make its conservation a challenging task, particularly when combined with other threats such as climate change and non-native species. We offer recommendations on managing peripheral populations with depleted genetic characteristics and provide a reference for determining which existing populations will best serve as sources for future translocation efforts aimed at enhancing or restoring wild brook trout genetic integrity.  相似文献   

13.
Although the current glucocorticoids (GCs) treatment for systemic lupus erythematosus (SLE) is effective to a certain extent, the difference in therapeutic effect between patients is still a widespread problem. Some patients can have repeated attacks that greatly diminish their quality of life. This study was conducted to investigate the relationship between HSP90AA2 polymorphisms and disease susceptibility, GCs efficacy and health-related quality of life (HRQoL) in Chinese SLE patients. A case–control study was performed in 470 SLE patients and 470 normal controls. Then, 444 patients in the case group were followed up for 12 weeks to observe efficacy of GCs and improvement of HRQoL. Two single nucleotide polymorphisms (SNPs) of HSP90AA2 were selected for genotyping: rs1826330 and rs6484340. HRQoL was assessed using the SF-36 questionnaire. The minor T allele of rs1826330 and the TT haplotype formed by rs1826330 and rs6484340 showed associations with decreased SLE risk (T allele: PBH?=?0.022; TT haplotype: PBH?=?0.033). A significant association between rs6484340 and improvement of HRQoL was revealed in the follow-up study. Five subscales of SF-36 were appeared to be influenced by rs6484340: total score of SF-36 (additive model: PBH?=?0.026), physical function (additive model: PBH?=?0.026), role-physical (recessive model: PBH?=?0.041), mental health (dominant model: PBH?=?0.047), and physical component summary (additive model: PBH?=?0.026). No statistical significance was found between HSP90AA2 gene polymorphisms and GCs efficacy. These results revealed a genetic association between HSP90AA2 and SLE. Remarkably, HSP90AA2 has an impact on the improvement of HRQoL in Chinese population with SLE.  相似文献   

14.
We report the successful high-yield expression of Candida utilis uricase in Escherichia coli and the establishment of an efficient three-step protein purification protocol. The purity of the recombinant protein, which was confirmed to be C. utilis uricase by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis, was >98% and the specific activity was 38.4 IU/mg. Crystals of C. utilis uricase were grown at 18°C using 25% polyethylene glycol 3350 as precipitant. Diffraction by the crystals extends to 1.93 Å resolution, and the crystals belong to the space group P212121 with unit cell parameters a?=?69.16 Å, b?=?139.31 Å, c?=?256.33 Å, and α?=?β?=?γ?=?90°. The crystal structure of C. utilis uricase shares a high similarity with other reported structures of the homologous uricases from other species in protein database, demonstrating that the three-dimensional structure of the protein defines critically to the catalytic activities.  相似文献   

15.
Abstract: Studies of space use and habitat selection of endangered species are useful for identifying factors that influence fitness of individuals and viability of populations. However, there is a lack of published information regarding these behaviors for the federally threatened Louisiana black bear (Ursus americanus luteolus). We documented space use and habitat selection for 28 female black bears in 2 subpopulations of the Tensas River Basin population in northeast Louisiana, USA. The Tensas subpopulation inhabits a relatively large (>300-km2) contiguous area of bottomland hardwood forest, whereas the Deltic subpopulation exists mainly in 2 small (<7-km2) forested patches surrounded by an agricultural matrix. Females on Deltic maintained smaller seasonal and annual home ranges than females on Tensas (all P < 0.04), except for females with cubs during spring. On Tensas, females with cubs maintained smaller home ranges than females without cubs during spring (P = 0.01), but we did not detect this difference on Deltic or in other seasons. Females on Tensas and Deltic exhibited differences in habitat selection when establishing home ranges and within home ranges (P < 0.001). Deltic females selected mature bottomland hardwood forests and avoided agricultural habitats at both spatial scales. Tensas females selected a mixture of swamps, mature and regenerating forests, and exhibited variation in selection across scale, season, and reproductive status. We suggest that differences in space use and habitat selection between Tensas and Deltic are at least partially due to habitat differences at the landscape (i.e., amount of forested habitat) and patch (i.e., food availability) scales. Our results contribute to the understanding of factors that influence space use and habitat selection by black bears and provide specific information on habitat types selected by Louisiana black bears to agencies involved in habitat protection and restoration for this threatened subspecies.  相似文献   

16.
Rare species consisting of small populations are subject to random genetic drift, which reduces genetic diversity. Thus, determining the relationship between population size and genetic diversity would provide key information for planning a conservation strategy for rare species. We used six microsatellite markers to investigate seven extant populations of the rare conifer Pseudotsuga japonica, which is endemic to the Kii Peninsula and Shikoku Island regions that are geographically separated by the Kii Channel in southwest Japan. The population differentiation of P. japonica was relatively high (FST = 0.101) for a coniferous species, suggesting limited gene flow among populations. As expected, significant regional differentiation (AMOVA; p?<?0.05) indicated genetic divergence across the Kii Channel. A strong positive correlation between census population size and the number of rare alleles (r?=?0.862, p?<?0.05) was found, but correlations with major indices of genetic diversity were not significant (allelic richness: r?=?0.649, p?=?0.104, expected heterozygosity: r?=?0.361, p?=?0.426). The observed order of magnitude of correlation with three genetic diversity indices corresponded with the theoretically expected order of each index’ sensitivity (i.e., the rate of decline per generation) to the bottleneck event. Thus, features that exhibit a faster response, i.e., the number of rare alleles, would have been subject to deleterious effects of the recent decline in population size, which is presumably caused by the development of extensive artificial plantations of other tree species over the last several decades. Finally, we propose a conservation plan for P. japonica based on our findings.  相似文献   

17.
The southeastern United States (U.S.) has experienced dynamic climatic changes over the past several million years that have impacted species distributions. In many cases, contiguous ranges were fragmented and a lack of gene flow between allopatric populations led to genetic divergence and speciation. The Southern Red-backed Salamander, Plethodon serratus, inhabits four widely disjunct regions of the southeastern U.S.: the southern Appalachian Mountains, the Ozark Plateau, the Ouachita Mountains, and the Southern Tertiary Uplands of central Louisiana. We integrated phylogenetic analysis of mitochondrial DNA sequences (1399 base pairs) with ecological niche modeling to test the hypothesis that climate fluctuations during the Pleistocene drove the isolation and divergence of disjunct populations of P. serratus. Appalachian, Ozark, and Louisiana populations each formed well-supported clades in our phylogeny. Ouachita Mountain populations sorted into two geographically distinct clades; one Ouachita clade was sister to the Louisiana clade whereas the other Ouachita clade grouped with the Appalachian and Ozark clades but relationships were unresolved. Plethodon serratus diverged from its sister taxon, P. sherando, ~5.4 million years ago (Ma), and lineage diversification within P. serratus occurred ~1.9–0.6 Ma (Pleistocene). Ecological niche models showed that the four geographic isolates of P. serratus are currently separated by unsuitable habitat, but the species was likely more continuously distributed during the colder climates of the Pleistocene. Our results support the hypothesis that climate-induced environmental changes during the Pleistocene played a dominant role in driving isolation and divergence of disjunct populations of P. serratus.  相似文献   

18.
Freshwater sponges play a major role in freshwater ecological system as important filter-feeding organisms and bioindicators. There are only few data about their ecological diversity and population genetic structure available, though a deeper knowledge is needed to propose proper conservation and effective management. The aim of this study was to assess data on distribution patterns of freshwater sponges to study the connectivity of genotypes of Ephydatia fluviatilis in a river system. We sampled specimens from River-Sieg system (River Agger and River Sieg, Germany). We hypothesized that strong anthropogenic influence would cause a uniform distribution of population structures. The genetic structure of E. fluviatilis populations was analysed with a set of eleven microsatellite loci from seven locations in River-Sieg system. Besides of E. fluviatilis, three other species co-occurred (Ephydatia mülleri, Spongilla lacustris, Eunapius fragilis). In contrast to our hypothesis, we observed an overall correlation between genetic and geographic distances among populations of this sessile species, which follows a clear isolation-by-distance pattern. A significant microsatellite polymorphism and high levels of genetic divergence between populations (FST) in upstream reaches were present. These results will provide important information for conservation management of populations with limited dispersal ability in connected river systems.  相似文献   

19.
The article presents the genetic parameters of the populations of lizards of the Darevskia raddei complex (D. raddei nairensis and D. raddei raddei) and the populations of D. valentini calculated on the basis of the analysis of variability of 50 allelic variants of the three nuclear genome microsatellite-containing loci of 83 individuals. It was demonstrated that the Fst genetic distances between the populations of D. raddei nairensis and D. raddei raddei were not statistically significantly different from the Fst genetic distances between the populations of different species, D. raddei and D. valentini. At the same time, these distances were statistically significantly higher than the Fst distances between the populations belonging to one species within the genus Darevskia. These data suggest deep divergence between the populations of D. raddei raddei and D. raddei nairensis of the D. raddei complex and there arises the question on considering them as separate species.  相似文献   

20.
The estimates of genetic diversity in populations of chum salmon Oncorhynchus keta from different regions of Sakhalin Island, Iturup Island, and the Anadyr’ River were obtained on the basis of analysis of allozyme variability. These estimates together with our published earlier data on chum salmon from the Amur River basin and the rivers of the northern coast of the Sea of Okhotsk demonstrate pronounced regional genetic differentiation in the Asian part of the fish range. The intraregional level of interpopulation genetic diversity was maximum on Sakhalin Island (G ST = 6.6%) and was small on Iturup Island (G ST = 0.9%) and the northern coast of the Sea of Okhotsk (G ST = 0.6%). Interpopulation genetic diversity of Sakhalin chum salmon was almost commensurable to the diversity of the whole pool of studied Asian populations (G ST = 7.6%) and would be presented more completely in baselines assigned for genetic identification of mixed stocks. It was demonstrated that the character and degree of genetic differentiation between populations of chum salmon from the main hatcheries situated in different regions of the Sakhalin oblast and connected to one another by numerous transplantations of fertilized eggs did not change significantly during an approximately 20-year period of our observation, and this fact suggests low efficiency of such transplantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号