首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   

3.
In order to improve the luminescent performance of silicate blue phosphors, Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ phosphors were synthesized using one‐step calcination of a precursor prepared by chemical co‐precipitation. The crystal structure and luminescent properties of the phosphors were analyzed using X‐ray diffraction and fluorescence spectrophotometry, respectively. Because the activated ions (Eu2+) can occupy two different types of sites (Sr1 and Sr2), the emission spectrum of Eu2+ excited at 350 nm contains two single bands (EM1 and EM2) in the wavelength range 400–550 nm, centered at 463 nm, and the emission intensity first increases and then decreases with increasing concentrations of Eu2+ ions. Co‐doping of Ce3+ ions can greatly enhance the emission intensity of Eu2+ by transferring its excitation energy to Eu2+. Because of concentration quenching, a higher substitution concentration of Ce3+ can lead to a decrease in the intensity. Meanwhile, the quantum efficiency of the phosphor is improved after doping with Ce3+, and a blue shift phenomenon is observed in the CIE chromaticity diagram. The results indicate that Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ can be used as a potential new blue phosphor for white light‐emitting diodes.  相似文献   

4.
Eu2+‐doped Sr2SiO4 phosphor with Ca2+/Zn2+ substitution, (Sr1–xMx)2SiO4:Eu2+ (M = Ca, Zn), was prepared using a high‐temperature solid‐state reaction method. The structure and luminescence properties of Ca2+/Zn2+ partially substituted Sr2SiO4:Eu2+ phosphors were investigated in detail. With Ca2+ or Zn2+ added to the silicate host, the crystal phase could be transformed between the α‐form and the β‐form of the Sr2SiO4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu2+ ions occupying the ten‐fold oxygen‐coordinated Sr.(I) site and the nine‐fold oxygen‐coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr2SiO4:Eu2+ phosphors, improved remarkably on Ca2+/Zn2+ addition, and promote its application in white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Red‐emitting Li2Sr1‐3x/2EuxSiO4 0≤x≤0.5) phosphors were synthesized at 900°C in air by a solid‐state reaction. The synthesized phosphors were characterized by X‐ray powder diffraction, photoluminescence (PL) excitation (PLE) and PL spectra. The results from the PLE spectra suggest that the strong 394 nm excitation peak associated with the 5L6 state of Eu3+ ions is of significance for near ultraviolet pumped white light‐emitting diodes and solid‐state lighting. It is also noted that the position of the charge transfer state of Eu3+ ions shifts towards the higher energy side (blue shift) by increasing the content of Eu3+ ions. The predominant emissions of Eu3+ ions under 394 nm excitation are observed at 580, 593, 614, 656 and 708 nm, which are attributed to the 5D07FJ (J = 0, 1, 2, 3 and 4), respectively. The PL results reveal that the optimal content of the red‐emitting Li2Sr1‐3x/2EuxSiO4 phosphors is x = 0.475. Simulation of the white light excited by 394 nm near ultraviolet light has also been carried out for its potential white light‐emitting diode applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Ca3SiO4Cl2 co‐doped with Ce3+,Eu2+ was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3SiO4Cl2: Ce3+,Eu2+ were investigated. Eu2+ ions can give enhanced green emission through Ce3+ → Eu2+ energy transfer in these phosphors. The green phosphor Ca2.9775SiO4Cl2:0.0045Ce3+,0.018Eu2+ showed intense green emission with broader excitation in the near‐ultraviolet light range. A green light‐emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three‐band white LED. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We report the thermoluminescence properties of Sr1.96Al2SiO7:Eu0.04 and Sr1.92Al2SiO7:Eu0.04Dy0.04 phosphors. These phosphors were prepared by a high‐temperature solid‐state reaction method. The prepared phosphors were characterized by X‐ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60Co source was used for γ‐irradiation. The effect of heating rate and UV‐exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ‐ and UV‐irradiation on thermoluminescence studies was also examined.  相似文献   

12.
In the present article we report europium‐doped strontium ortho‐silicates, namely Sr2SiO4:xEu3+ (x = 1.0, 1.5, 2.0, 2.5 or 3.0 mol%) phosphors, prepared by solid state reaction method. The crystal structures of the sintered phosphors were consistent with orthorhombic crystallography with a Pmna space group. The chemical compositions of the sintered phosphors were confirmed by energy dispersive X‐ray spectroscopy (EDS). Thermoluminescence (TL) kinetic parameters such as activation energy, order of kinetics and frequency factors were calculated by the peak shape method. Orange‐red emission originating from the 5D07FJ (J = 0, 1, 2, 3) transitions of Eu3+ ions could clearly be observed after samples were excited at 395 nm. The combination of these emissions constituted orange‐red light as indicated on the Commission Internationale de l'Eclairage (CIE) chromaticity diagram. Mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increasing impact velocity of the moving piston that suggests that these phosphors can also be used as sensors to detect the stress of an object. Thus, the present investigation indicates that the piezo‐electricity was responsible for producing ML in the prepared phosphor.  相似文献   

13.
Long persistence phosphor CaAl4O7: Eu2+, Dy3+ were prepared by a combustion method. The phosphors were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), decay time measurement techniques and photoluminescence spectra (PL). The CaAl4O7: Eu2+, Dy3+ phosphor showed a broad blue emission, peaking at 445 nm when excited at 341 nm. Such a blue emission can be attributed to the intrinsic 4f → 5d transitions of Eu2+ in the host lattices. The lifetime decay curve of the Dy3+ co‐doped CaAl4O7: Eu2+ phosphor contains a fast decay component and another slow decay one. Surface morphology also has been studied by SEM. The calculated CIE colour chromaticity coordinates was (0.227, 043). We have also discussed a possible long‐persistent mechanism of CaAl4O7:Eu2+, Dy3+ phosphor. All the results indicate that this phosphor has promising potential for practical applications in the field of long‐lasting phosphors for the purposes of sign boards and defence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A novel phosphor LiBaPO4 doped with rare earths Eu and Dy prepared by high temperature solid‐state reaction method is reported. The phosphors were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The emission and excitation spectra of these materials were measured at room temperature with a spectrofluorophotometer. The excitation spectra of LiBaPO4:Eu3+ phosphor can be efficiently excited by 394 nm, which is matched well with the emission wavelength of near‐UV light‐emitting diode (LED) chip. PL properties of Eu3+‐doped LiBaPO4 exhibited the characteristic red emission coming from 5D07 F1 (593 nm) and 5D07 F2 (617 nm) electronic transitions with color co‐ordinations of (0.680, 0.315). The results demonstrated that LiBaPO4:Eu3+ is a potential red‐emitting phosphor for near‐UV LEDs. Emission spectra of LiBaPO4:Dy3+ phosphors showed efficient blue (481 nm) and yellow (574 nm) bands, which originated from 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. The 574 nm line is more intense than the 481 nm lines, which indicates that the site Dy3+ is located with low symmetry. This article summarizes fundamentals and possible applications of optically useful inorganic phosphates with visible photoluminescence of Eu3+ and Dy3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

16.
Ba3Al2O5Cl2:Eu2+ phosphor was prepared by combustion synthesis (CS). The prepared phosphor was excited at 329 nm; the phosphors shows an efficient bluish‐green wide‐band emission centred at 490 nm, which originates from the 4f6d1 → 4f7 transition of Eu2+ ions. The excitation spectra of the phosphors have a band centred at 329 nm. It was also characterized by XRD, FT–IR for confirmation of phase purity, and FT–IR analysis indicated the vibrations of metal–oxygen (M–O) groups. SEM shows the morphology of the phosphor at the submicron scale. The results indicate that Ba3Al2O5Cl2:Eu2+ phosphor may be applicable for solid‐state lighting purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

18.
In this study, Eu‐doped Li2(Ba1‐xSrx)SiO4 powders (x = 0, 0.2, 0.4, and 0.6) were synthesized at 850°C in a reduction atmosphere (5% H2 + 95% N2) for a duration of 1 h using a solid‐state reaction method. The reduction atmosphere was infused as the synthesis temperature reached 850°C, and was removed as the temperature dropped to 800–500°C. Li2(Ba1‐xSrx)SiO4 (or Li2BaSiO4), (Ba,Sr)2SiO4 (or BaSiO4), and Li4SiO4 phases co‐existed in the synthesized Eu‐doped Li2(Ba1‐xSrx)SiO4 powders. A new finding was that the reduction atmosphere removing (RAR) temperature of the Li2(Ba1‐xSrx)SiO4 phosphors had a large effect on their photoluminescence excitation (PLE) and PL properties. Except for the 800°C‐RAR‐treated Li2BaSiO4 phosphor, PLE spectra of all other Li2(Ba1‐xSrx)SiO4 phosphors had one broad emission band with two emission peaks centred at ~242 and ~283 nm; these PL spectra had one broad emission band with one emission peak centred at 502–514 nm. We showed that the 800°C‐RAR‐treated Li2BaSiO4 phosphor emitted a red light and all other Li2(Ba1‐xSrx)SiO4 phosphors emitted a green light. Reasons for these results are discussed thoroughly.  相似文献   

19.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Nanophosphors of (Sr0.98‐xMgxEu0.02)2SiO4 (x = 0, 0.18, 0.38, 0.58 and 0.78) were prepared through low temperature solution combustion method and their luminescence properties were studied. The emission peak for Eu2+ ?doped Sr2SiO4 nanophosphor is observed at ~490 nm and ~553 nm corresponding to two Sr2+ sites Sr(I) and Sr(II) respectively for 395 nm excitation. However the addition of Mg2+ dopant in Sr2SiO4 leads to suppression of ~553 nm emission peak due to absence of energy levels of Sr (II) sites which results in a single broad emission at ~460 nm. It was shown that the emission peak blue shifted with increase in Mg concentration which may be attributed to change in crystal field environment around Sr(I) sites. Therefore, the (Mg0.78Sr0.20Eu0.02)2SiO4 nanophosphor can be used for blue emission and the Sr2SiO4:Eu0.042+ for green–yellow emission at 395 nm excitations. The Commission International de L'Eclairage (CIE) chromaticity coordinates for mixed powders of (Mg0.78Sr0.20Eu0.02)2SiO4 and Sr2SiO4:Eu0.042+ (in a 1:1 ratio) fall in the white region demonstrating the possible use of the mixture in white light generation using near‐UV excitation source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号