首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of α(2)-adrenoceptors in regulation of gastric motility has been well documented. However, only few data are available on the adrenoceptor subtype that mediates this effect. The purpose of the present work was to identify the α(2)-adrenoceptor subtype(s) responsible for the inhibition of gastric motor activity in isolated fundus strip of the mouse. It was shown that (i) the electrically evoked contraction of the gastric fundus strip of the mouse was inhibited by the non-selective α(2)-adrenoceptor stimulant clonidine (EC(50): 0.019±0.001μM), the α(2A)-adrenoceptor subtype selective agonist oxymetazoline (EC(50): 0.004±0.001μM) and the α(2B)-adrenoceptor subtype preferring ST-91 (EC(50): 0.029±0.004μM), (ii) the inhibitory effect of clonidine (1μM), oxymetazoline (0.1μM) and ST-91 (1μM) on the contractions of gastric fundus strip was reversed by the non-selective α(2)-adrenoceptor antagonist idazoxan and α(2A)-adrenoceptor antagonist BRL 44408, but not by the α(2B/2C)-adrenoceptor antagonist ARC-239. (iii) Clonidine and ST-91 inhibited the electrically induced gastric contractions in C57BL/6 wild type mice as well as in α(2B)- and α(2C)-adrenoceptor deficient mice in a concentration-dependent manner; however, neither of them was effective in α(2A)-deficient mice. As a conclusion, it was first demonstrated that the inhibitory effect of α(2)-adrenoceptor agonists on the gastric motor activity of isolated stomach strip of the mouse is mediated purely by α(2A)-adrenoceptors.  相似文献   

2.
Conformational thermostabilisation of G-protein-coupled receptors is a successful strategy for their structure determination. The thermostable mutants tolerate short-chain detergents, such as octylglucoside and nonylglucoside, which are ideal for crystallography, and in addition, the receptors are preferentially in a single conformational state. The first thermostabilised receptor to have its structure determined was the β1-adrenoceptor mutant β1AR-m23 bound to the antagonist cyanopindolol, and recently, additional structures have been determined with agonist bound. Here, we describe further stabilisation of β1AR-m23 by the addition of three thermostabilising mutations (I129V, D322K, and Y343L) to make a mutant receptor that is 31 °C more thermostable than the wild-type receptor in dodecylmaltoside and is 13 °C more thermostable than β1AR-m23 in nonylglucoside. Although a number of thermostabilisation methods were tried, including rational design of disulfide bonds and engineered zinc bridges, the two most successful strategies to improve the thermostability of β1AR-m23 were an engineered salt bridge and leucine scanning mutagenesis. The three additional thermostabilising mutations did not significantly affect the pharmacological properties of β1AR-m23, but the new mutant receptor was significantly more stable in short-chain detergents such as heptylthioglucoside and denaturing detergents such as SDS.  相似文献   

3.
4.
A series of 3-[(4,5-dihydroimidazolidin-2-yl)imino]indazoles has been synthesized as positional analogues of marsanidine, a highly selective ??2-adrenoceptor ligand. Parent compound 4a and its 4-chloro (4c) and 4-methyl (4d) derivatives display ??2-adrenoceptor affinity at nanomolar concentrations (Ki = 39.4, 15.9 and 22.6 nM, respectively) and relatively high ??2/I1 selectivity ratios of 82, 115 and 690, respectively. Evidence was obtained that these compounds act as partial agonists at ??2A-adrenoceptors. Compound 4d with intrinsic activity comparable with that of marsanidine, but lower than that of clonidine, elicited pronounced cardiovascular effects in anesthetized rats at doses as low as 0.01 mg/kg iv  相似文献   

5.
6.
The synthesis of a series of indacaterol analogues in which each of the three structural regions of indacaterol are modified in a systematic manner is described. Evaluation of the affinity of these analogues for the β(2)-adrenoceptor identified the 3,4-dihydroquinolinone and 5-n-butylindanyl analogues to demonstrate the most similar profiles to indacaterol. An α-methyl aminoindane analogue was discovered to be 25-fold more potent than indacaterol, and functional studies revealed an atypical β(2)-adrenoceptor activation profile for this compound consistent with that of a slowly dissociating 'super agonist'.  相似文献   

7.
Adrenergic receptor (AR)-mediated signalling is modulated by oxygen levels. Prolyl hydroxylases (PHDs) are crucial for intracellular oxygen sensing and organism survival. However, it remains to be clarified whether or how PHDs are involved in the regulation of β(2) -adrenoceptor (β(2) -AR) signalling. Here we show that PHD2 can modulate the rate of β(2) -AR internalization through interactions with β-arrestin 2. PHD2 hydroxylates β-arrestin 2 at the proline (Pro)(176), Pro(179) and Pro(181) sites, which retards the recruitment of β-arrestin 2 to the plasma membrane and inhibits subsequent co-internalization with β(2) -AR into the cytosol. β(2) -AR internalization is critical to control the temporal and spatial aspects of β(2) -AR signalling. Identifying novel regulators of β(2) -AR internalization will enable us to develop new strategies to manipulate receptor signalling and provide potential targets for drug development in the prevention and treatment of diseases associated with β(2) -AR signalling dysregulation.  相似文献   

8.
A multivalent approach was applied to the design of long-acting inhaled β(2)-adrenoceptor agonists. A series of dimeric arylethanolamines based on the short acting β(2)-adrenoceptor agonist albuterol were prepared, varying the nature and length of the linker between the basic nitrogens. None of the C(2)-symmetric dimers demonstrated increased potency, however dimer 5j, derived from 4-phenethylamine, was found to have increased binding potency in vitro relative to the parent monomer. Optimization of this structure led to the identification of 22 (milveterol) which demonstrates high potency in vitro and long duration of action in a guinea pig model of bronchoprotection.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号