首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
A wide variety of base damages and single-strand breaks formed by reactive oxygen species during metabolic activation of polycyclic aromatic hydrocarbons (PAHs) have been recognized to be involved in PAH carcinogenesis. In this study, alkaline comet assay was used to detect the DNA damage in peripheral blood lymphocytes among 143 coke-oven workers and 50 non-coke-oven workers, and the effects of genetic polymorphisms of XRCC1 and ERCC2 genes on DNA damage were evaluated. The olive tail moment was significantly higher in coke-oven workers than in non-coke-oven workers (2.6, 95% CI=2.1–3.3 versus 1.0, 95% CI=0.8–1.2, p<0.01), and significant correlation between ln-transformed urinary 1-OHP and ln-transformed olive tail moment was found in total population (n=193, Pearson's r=0.393, p<0.001) and in coke-oven workers (n=143, Pearson's r=0.224, p=0.007). The olive tail moment was significantly higher in coke-oven workers with GA genotype of G27466A polymorphism of XRCC1 than those with GG genotype (4.6, 95% CI=2.5–8.7 versus 2.4, 95% CI=1.9–2.9, p<0.01 with adjustment for covariates). No significant associations between C26304T, G28152A and G36189A polymorphisms of XRCC1 and G23591A and A35931C polymorphisms of ERCC2 and olive tail moment were found in both groups. The study showed that the alkaline comet assay is a suitable biomarker in the detection of DNA damage among coke-oven workers and it suggested that the A allele of G27466A polymorphism of XRCC1 may be associated with decreased DNA repair capacity toward PAH-induced base damage and strand breaks.  相似文献   

2.
ABSTRACT: BACKGROUND: Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. FINDINGS: The median (P25-P75) of Olive tail moment was 0.93 (0.58-1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46-1.35) for GA heterozygote and 0.50 (0.43-0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44-1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15-0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. CONCLUSION: The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage.  相似文献   

3.
J. Cheng  S. Leng  Y. Dai  C. Huang  Z. Pan  Y. Niu 《Biomarkers》2013,18(1):76-86
The associations between several genetic polymorphisms of nucleotide excision repair genes (NER) and chromosome damage level were studied among 140 coke-oven workers exposed to a high level of polyaromatic hydrocarbons (PAHs) and 66 non-exposed workers. Seven polymorphisms with functional potential in five NER genes (ERCC1, ERCC2, ERCC4, ERCC5 and ERCC6) were genotyped in the 206 study subjects. Multivariate analysis of covariance revealed that coke-oven workers with the ERCC1 19007 CC genotype had significantly higher cytokinesis-block micronucleus frequency (CBMN) (10.5±6.8‰) than those with CT (8.1±6.6‰, p=0.01) or TT (6.6±3.7‰, p=0.05) or CT+TT genotypes (7.5±6.3‰, p=0.004). The ERCC6 A3368G polymorphism was also associated with CBMN frequency among coke-oven workers. Subjects with the AA genotype have a significantly higher CBMN frequency (10.0±6.9‰) than those with AG (6.7±4.2‰, p=0.05) or AG+GG genotypes (6.6±4.1‰, p=0.02). Stratification analysis revealed the significant associations between ERCC1 C19007T and ERCC6 A3368G, and the CBMN frequencies were only found among older workers. In addition, a significant association between ERCC2 G23591A polymorphism and CBMN frequencies was also found among older coke-oven workers. The results suggest that polymorphisms of ERCC1 C19007T, ERCC6 A3368G and ERCC2 G23591A are associated with the CBMN frequencies among coke-oven workers  相似文献   

4.
Yang X  Yuan J  Sun J  Wang H  Liang H  Bai Y  Guo L  Tan H  Yang M  Wang J  Su J  Chen Y  Tanguay RM  Wu T 《Mutation research》2008,649(1-2):221-229
Hsp70 has been shown to act as a chaperone and be associated with cytoprotection against DNA damage caused by environmental stresses. However, it is unknown whether genetic variation in HSP70 plays a role in stress tolerance and cytoprotection against DNA damage. We determined the frequencies of three polymorphisms, HSP70-1 G190C, HSP70-2 G1267A, and HSP70-hom T2437C from 251 steel-plant workers exposed to coke-oven emission and 130 controls. We estimated the association between the HSP70variants/haplotypes and the levels of DNA damage in their peripheral blood lymphocytes detected by single-cell gel electrophoresis assay. Our results showed that overall coke-oven workers had higher levels of the Olive tail moment (Olive TM) (1.27+/-1.12) than that of the controls (0.56+/-0.99, P<0.001). Coke-oven workers with the HSP70-1 C/C genotype had higher levels of Olive TM (2.19+/-0.65), compared with HSP70-1 G/C and G/G carriers (Olive TM=1.34+/-1.09 and 1.14+/-1.08, respectively, P=0.022 and 0.003, respectively). However, the HSP70-2 G1267A and HSP70-hom T2437C polymorphisms were not associated with the levels of Olive TM (P=0.929 and 0.795, respectively). Haplotype analysis showed that carriers of TCG/TCG haplotype pairs had the highest levels of Olive TM among both the exposed subjects (2.04+/-0.59) and the controls (0.81+/-0.59). Our results suggest that the individuals with the homozygous HSP70-1 C/C genotype among the coke-oven workers may be susceptible to DNA damage.  相似文献   

5.
Pesticide exposure is associated with various neoplastic diseases and congenital malformations. Previous studies have indicated that pesticides may be metabolized by cytochrome P450 3A5 or glutathione S-transferases. DNA-repair genes, including X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD), may also be implicated in the process of pesticide-related carcinogenesis. Thus, we investigated whether various metabolic and DNA-repair genotypes increase the risk of DNA damage in pesticide-exposed fruit growers. Using the comet assay, the extent of DNA damage was evaluated in the peripheral blood of 135 pesticide-exposed fruit growers and 106 unexposed controls. The metabolic genotypes CYP3A5 (A(-44)G) and GSTP1 (Ile105Val) and DNA-repair genotypes XRCC1 (Arg399Gln, Arg194Trp, T(-77)C) and XPD (Asp312Asn, Lys751Gln) were identified by polymerase chain reaction. Our multiple regression model for DNA tail moment showed that age, high pesticide exposure, low pesticide exposure, GSTP1 Ile-Ile, and XRCC1 399 Arg-Arg genotype were associated with increased DNA tail moment (DNA damage). Further analysis of interaction between GSTP1 and XRCC1 genes that increase susceptibility revealed a significant difference in DNA tail moment for high pesticide-exposed subjects carrying both GSTP1 Ile-Ile with XRCC1 399 Arg-Arg genotypes (2.49+/-0.09 microm/cell; P=0.004), compared to those carrying GSTP1 Ile-Val/Val-Val with XRCC1 399 Arg-Gln/Gln-Gln genotypes (1.98+/-0.15 microm/cell). These results suggest that individuals with susceptible metabolic GSTP1 and DNA-repair XRCC1 genotypes may be at increased risk of DNA damage due to pesticide exposure.  相似文献   

6.
Karashdeep Kaur 《Biomarkers》2020,25(6):498-505
Abstract

Pesticide-induced DNA damage is primarily repaired by base excision repair (BER) pathway. However, polymorphism in DNA repair genes may modulate individual’s DNA repair capacity (DRC) leading to increased genotoxicity and adverse health effects. Our first study in North-West Indian population aimed to evaluate the impact of OGG1 rs1052133 (Ser326Cys; C1245G), XRCC1 rs1799782 (Arg194Trp; C26304T) and XRCC1 rs25487 (Arg399Gln; G28152A) polymorphisms on the modulation of pesticide-induced DNA damage in a total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls). DNA damage was estimated by alkaline comet assay using silver-staining method. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. Mann-Whitney U-test revealed elevation in DNA damage parameters (p?<?0.01) in pesticide-exposed agricultural workers than controls. Chi-square test showed significant (p?<?0.05) differences in the XRCC1 Arg194Trp (C26304T) and Arg399Gln (G28152A) genotypes among two groups. Multivariate logistic-regression analysis revealed that heterozygous genotypes of OGG1 rs1052133 (326Ser/Cys; 1245CA), XRCC1 rs1799782 (194Arg/Trp; 26304CT) and XRCC1 rs25487 (399Arg/Gln; 2815GA) were positively associated (p?<?0.05) with elevated DNA damage parameters in pesticide-exposed agricultural workers. Our results strongly indicate significant positive association of variant OGG1 and XRCC1 genotypes with reduced DRC and higher pesticide-induced DNA damage in North-West Indian agricultural workers.  相似文献   

7.
GSTM1, T1 and P1 are important enzymes of glutathione S-transferases (GSTs), involved in the metabolism of many endogenous and exogenous compounds. Individual genetic variation in these metabolizing enzymes may influence the metabolism of their substrates. The present study was designed to determine the genotoxic effects using DNA damage and its association with GSTM1, GSTT1, and GSTP1 (Ile105Val) genetic polymorphisms in workers occupationally exposed to organophosphate pesticides (OPs). We examined 230 subjects including 115 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using individual PCR or PCR-RFLP. Significantly higher DNA tail moment (TM) was observed in workers as compared to control subjects (14.41 ± 2.25 vs. 6.36 ± 1.41 tail % DNA, p<0.001). The results revealed significantly higher DNA TM in workers with GSTM1 null genotype than those with GSTM1 positive (15.18 vs. 14.15 tail % DNA, p=0.03). A significantly higher DNA TM was also observed in workers with homozygous Ile-Ile GSTP1 genotype than heterozygous (Ile-Val) and mutant (Val-Val) GSTP1 genotype (p=0.02). In conclusion, the results show that null deletion of GSTM1 and homozygote wild GSTP1 genotype could be related to inter-individual differences in DNA damage arises from the gene-environment interactions in workers occupationally exposed to OPs.  相似文献   

8.
Gene–environment interactions have long been known to play an important role in complex disease aetiology, such as nasal polyposis (NP). The present study supports the concept that DNA repair gene polymorphisms play critical roles in modifying individual susceptibility to environmental diseases. In fact, we investigated the role of polymorphisms in DNA repair genes and cadmium as risk factors for Tunisian patients with NP. To the best of our knowledge, this is the first report on the impact of combined effects of cadmium and ERCC3 7122 A>G (rs4150407), ERCC2 Lys751Gln (rs13181) and XRCC1 Arg399Gln (rs25487) genes in the susceptibility to NP disease. Significant associations between the risk of developing NP disease and ERCC2 [odds ratio (OR)?=?2.0, 95 % confidence interval (CI)?=?1.1–3.7, p?=?0.023] and ERCC3 (OR?=?2.2, 95 % CI?=?1.2–4.1, p?=?0.013) genotypes polymorphisms were observed. Blood concentrations of Cd in NP patients (2.2 μg/L) were significantly higher than those of controls (0.5 μg/L). A significant interaction between ERCC3 (7122 A>G) polymorphism and blood-Cd levels (for the median of blood-Cd levels: OR?=?3.8, 95 % CI?=?1.3–10.8, p?=?0.014 and for the 75th percentiles of blood-Cd levels: OR?=?2.7, 95 % CI?=?1.1–7.2, p?=?0.041) was found in association with the risk of NP disease. In addition, when we stratified ERCC2, ERCC3 and XRCC1 polymorphism genotypes by the median and 75th percentiles of blood-Cd levels, we found also significant interactions between ERCC2 (Lys751Gln) and ERCC3 (7122 A>G) genotypes polymorphism and this metal in association with NP disease. However, no interaction was found between XRCC1 (Arg399Gln) polymorphism genotypes and Cd in association with NP disease.  相似文献   

9.
Previous studies have revealed that organophosphate pesticides (OPs) are primarily metabolized by xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticides-exposed workers. Present study was designed to determine the influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to OPs. We examined 268 subjects including 134 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using alkaline comet assay and genotyping was done using individual polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Acetylcholinesterase and paraoxonase activity were found to be significantly lowered in workers as compared to control subjects which were analyzed as biomarkers of toxicity due to OPs exposure (p<0.001). Workers showed significantly higher DNA tail moment (TM) compared to control subjects (14.32±2.17 vs. 6.24±1.37 tail % DNA, p<0.001). GSTM1 null genotype was found to influence DNA TM in workers (p<0.05). DNA TM was also found to be increased with concomitant presence of NAT2 slow acetylation and CYP2C9*3/*3 or GSTM1 null genotypes (p<0.05). DNA TM was found increased in NAT2 slow acetylators with mild and heavy smoking habits in control subjects and workers, respectively (p<0.05). The results of this study suggest that GSTM1 null genotypes, and an association of NAT2 slow acetylation genotypes with CYP2C9*3/*3 or GSTM1 null genotypes may modulate DNA damage in workers occupationally exposed to OPs.  相似文献   

10.
We have recently suggested that polymorphisms in metabolism and repair pathways may play a role in modulating the effects of exposure to the carcinogen vinyl chloride in the production of biomarkers of its mutagenic damage. The aim of the present study was to extend these observations by examining gene–environment interactions between several common polymorphisms in the DNA repair genes XRCC1 and ERCC2/XPD and vinyl chloride exposure on the production of vinyl chloride-induced biomarkers of mutation. A cohort of 546 French vinyl chloride workers were genotyped for the XRCC1 codon 194 (Arg>Trp; rs1799782), 280 (Arg>His; rs25489) and 399 (Arg>Gln; rs25487) polymorphisms and the ERCC2/XPD codon 312 (Asp>Asn; rs1799793) and 751 (Lys>Gln; rs13181) polymorphisms. The results demonstrated a statistically significant allele dosage effect of the XRCC1 399 variant on the production of the vinyl chloride-induced mutant p53 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p = 0.03), with a potentially supramultiplicative gene–environment interaction. In addition, the results demonstrate statistically significant allele dosage effects of the ERCC2/XPD 312 and 751 variants on the production of the vinyl chloride-induced mutant ras-p21 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p < 0.0001 and p = 0.0006, respectively), with a potentially supramultiplicative gene–environment interaction for the codon 751 allele. Finally, the results suggest potential supramultiplicative gene–gene interactions between CYP2E1 (c2 allele; rs3813867) and ERCC2/XPD polymorphisms that are consistent with the proposed carcinogenic pathway for vinyl chloride, which requires metabolic activation by CYP2E1 to reactive intermediates that form DNA adducts that, if not removed by DNA repair mechanisms, result in oncogenic mutations.  相似文献   

11.
The authors have recently demonstrated a significant gene-environment interaction between vinyl chloride exposure and polymorphisms in the DNA repair protein XRCC1 on the occurrence of mutant p53 biomarkers of vinyl chloride-induced genetic damage. The aim of this study was to examine the polymorphisms in the glutathione S-transferases (GSTs) as potential modifiers of this relationship, since these enzymes may be involved in the phase II metabolism of the reactive intermediates of vinyl chloride. A cohort of 211 French vinyl chloride workers was genotyped for common polymorphisms in GSTM1, GSTT1 and GSTP1. Although no independent, statistically significant effect of these polymorphisms on the occurrence of the mutant p53 biomarker was found, the null GSTM1 and null GSTT1 polymorphisms were found to interact with the XRCC 1 polymorphism to increase the occurrence of the biomarker such that, for example, workers with at least one variant XRCC1 allele who were null for both GSTM1 and GSTT1 had a significant odds ratio for the biomarker (OR =8.4, 95% CI = 1.3 54.0) compared with workers who were wild-type for all alleles, controlling for potential confounders including cumulative vinyl chloride exposure.  相似文献   

12.
Malignant pleural mesothelioma (MPM) is a rare aggressive tumor associated with asbestos exposure. The possible role of genetic factors has also been suggested and MPM has been associated with single nucleotide polymorphisms (SNPs) of xenobiotic and oxidative metabolism enzymes. We have identified an association of the DNA repair gene XRCC1 with MPM in the population of Casale Monferrato, a town exposed to high asbestos pollution. To extend this observation we examined 35 SNPs in 15 genes that could be involved in MPM carcinogenicity in 220 MPM patients and 296 controls from two case-control studies conducted in Casale (151 patients, 252 controls) and Turin (69 patients, 44 controls), respectively. Unconditional multivariate logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Two DNA repair genes were associated with MPM, i.e. XRCC1 and ERCC1. Considering asbestos-exposed only, the risk increased with the increasing number of XRCC1-399Q alleles (Casale: OR=1.44, 95%CI 1.02-2.03; Casale+Turin: OR=1.34, 95%CI 0.98-1.84) or XRCC1 -77T alleles (Casale+Turin: OR=1.33, 95%CI 0.97-1.81). The XRCC1-TGGGGGAACAGA haplotype was significantly associated with MPM (Casale: OR=1.76, 95%CI 1.04-2.96). Patients heterozygotes for ERCC1 N118N showed an increased OR in all subjects (OR=1.66, 95%CI 1.06-2.60) and in asbestos-exposed only (OR=1.59, 95%CI 1.01-2.50). When the dominant model was considered (i.e. ERCC1 heterozygotes CT plus homozygotes CC versus homozygotes TT) the risk was statistically significant both in all subjects (OR=1.61, 95%CI 1.06-2.47) and in asbestos-exposed only (OR=1.56, 95%CI 1.02-2.40). The combination of ERCC1 N118N and XRCC1 R399Q was statistically significant (Casale: OR=2.02, 95%CI 1.01-4.05; Casale+Turin: OR=2.39, 95%CI 1.29-4.43). The association of MPM with DNA repair genes support the hypothesis that an increased susceptibility to DNA damage may favour asbestos carcinogenicity.  相似文献   

13.
The aim of this study was to investigate the effects of smoking, polymorphisms of XRCC1 codons 194 and 399, and age on levels of basal DNA damage (as measured by an alkaline comet assay) on mononuclear cells in 122 healthy Japanese workers. In the whole group of 122 individuals, the tail moment (TM) values of current smokers (P < 0.001) or former smokers (P = 0.03) were significantly higher than those of nonsmokers. Individuals bearing the XRCC1 399Gln variant allele showed significant increases in TM values in all subjects or in referent subgroups stratified by age or smoking status except in the current smokers group; in contrast, the TM values of individuals bearing the XRCC1 194Trp variant allele were significantly lower than those of individuals bearing wild-type Arg/Arg genotypes. Furthermore, older subjects (≥47 years old) had significantly higher TM values than younger subjects (<47 years old) in all subjects (P = 0.008). Multiple regression analysis indicated that smoking habits, polymorphisms of XRCC1 codons 194 and 399, and age were important variables affecting individuals basal DNA damage.  相似文献   

14.
Y. Li  M. Zhou  M.-J. Marion  S. Lee 《Biomarkers》2013,18(1):72-79
The authors have recently demonstrated a significant gene–environment interaction between vinyl chloride exposure and polymorphisms in the DNA repair protein XRCC1 on the occurrence of mutant p53 biomarkers of vinyl chloride-induced genetic damage. The aim of this study was to examine the polymorphisms in the glutathione S-transferases (GSTs) as potential modifiers of this relationship, since these enzymes may be involved in the phase II metabolism of the reactive intermediates of vinyl chloride. A cohort of 211 French vinyl chloride workers was genotyped for common polymorphisms in GSTM1, GSTT1 and GSTP1. Although no independent, statistically significant effect of these polymorphisms on the occurrence of the mutant p53 biomarker was found, the null GSTM1 and null GSTT1 polymorphisms were found to interact with the XRCC1 polymorphism to increase the occurrence of the biomarker such that, for example, workers with at least one variant XRCC1 allele who were null for both GSTM1 and GSTT1 had a significant odds ratio for the biomarker (OR=8.4, 95% CI=1.3–54.0) compared with workers who were wild-type for all alleles, controlling for potential confounders including cumulative vinyl chloride exposure.  相似文献   

15.
Gangwar R  Manchanda PK  Mittal RD 《Genetica》2009,136(1):163-169
Identifying risk factors for human cancers should consider combinations of genetic variations and environmental exposures. Several polymorphisms in DNA repair genes have impact on repair and cancer susceptibility. We focused on X-ray repair cross-complementing group 1 (XRCC1), Xeroderma pigmentosum D (XPD) and apurinic/apyrimidinic endonuclease (APE1) as these are most extensively studied in cancer. Present study was conducted to determine distribution of XRCC1 C26304T, G27466A, G23591A, APE1 T2197G and XPD A35931C gene polymorphisms in North Indian population and compare with different populations globally. PCR-based analysis was conducted in 209 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of XRCC1 C26304T were 91.1% C(Arg); G27466A 62.9% G(Arg); G23591A 60.3% G(Arg); APE1 T2197G 75.1% T(Asp) and XPD A35931C 71.8% A(Lys). The variant allele frequency were 8.9% T(Trp) in XRCC1 C26304T; 37.1% A(His) in G27466A; 39.7% A(Gln) in G23591A; 24.9% G(Glu) in APE1 and 28.2% C(Gln) in XPD respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.  相似文献   

16.
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = -0.663, P < 0.01) and with micronucleus rates (r = -0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = -0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission.  相似文献   

17.
Buccal cells are becoming a widely used tissue source for monitoring human exposure to occupational and environmental genotoxicants. A variety of methods exist for collecting buccal cells from the oral cavity, including rinsing with saline, mouthwash, or scraping the oral cavity. Buccal cells are also routinely cryopreserved with dimethyl sulfoxide (DMSO), then examined later for DNA damage by the comet assay. The effects of these different sampling procedures on the integrity of buccal cells for measuring DNA damage are unknown. This study examined the influence of the collection and cryopreservation of buccal cells on cell survival and DNA integrity. In individuals who rinsed with Hank's balanced salt solution (HBSS), the viability of leukocytes (90%) was significantly (p<0.01) greater than that of epithelial cells (12%). Similar survival rates were found for leukocytes (88%) and epithelial cells (10%) after rinsing with Listerine(?) mouthwash. However, the viability of leukocytes after cryopreservation varied significantly (p<0.01) with DMSO concentration. Cell survival was greatest at 5% DMSO. Cryopreservation also influenced the integrity of DNA in the comet assay. Although tail length and tail moment were comparable in fresh or cryopreserved samples, the average head intensity for cryopreserved samples was ~6 units lower (95% CI: 0.8-12 units lower) than for fresh samples (t(25)=-2.36, p=0.026). These studies suggest that the collection and storage of buccal samples are critical factors for the assessment of DNA damage. Moreover, leukocytes appear to be a more reliable source of human tissue for assessing DNA damage and possibly other biochemical changes.  相似文献   

18.
J. Cheng  S. Leng  Y. Dai  C. Huang  Z. Pan  Y. Niu  B. Li  Y. Zheng 《Biomarkers》2007,12(1):76-86
The associations between several genetic polymorphisms of nucleotide excision repair genes (NER) and chromosome damage level were studied among 140 coke-oven workers exposed to a high level of polyaromatic hydrocarbons (PAHs) and 66 non-exposed workers. Seven polymorphisms with functional potential in five NER genes (ERCC1, ERCC2, ERCC4, ERCC5 and ERCC6) were genotyped in the 206 study subjects. Multivariate analysis of covariance revealed that coke-oven workers with the ERCC1 19007 CC genotype had significantly higher cytokinesis-block micronucleus frequency (CBMN) (10.5±6.8‰) than those with CT (8.1±6.6‰, p=0.01) or TT (6.6±3.7‰, p=0.05) or CT+TT genotypes (7.5±6.3‰, p=0.004). The ERCC6 A3368G polymorphism was also associated with CBMN frequency among coke-oven workers. Subjects with the AA genotype have a significantly higher CBMN frequency (10.0±6.9‰) than those with AG (6.7±4.2‰, p=0.05) or AG+GG genotypes (6.6±4.1‰, p=0.02). Stratification analysis revealed the significant associations between ERCC1 C19007T and ERCC6 A3368G, and the CBMN frequencies were only found among older workers. In addition, a significant association between ERCC2 G23591A polymorphism and CBMN frequencies was also found among older coke-oven workers. The results suggest that polymorphisms of ERCC1 C19007T, ERCC6 A3368G and ERCC2 G23591A are associated with the CBMN frequencies among coke-oven workers  相似文献   

19.

Objectives

Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP), an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1) is located on chromosome 19q13.2–3 and participates in the crucial steps of Nucleotide Excision Repair (NER); moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk.

Methods

Nine single nucleotide polymorphisms (SNPs) of XRCC1 (X-ray repair cross-complementing 1), CD3EAP (CD3e molecule, epsilon associated protein), PPP1R13L (protein phosphatase 1, regulatory subunit 13 like), XPB (Xeroderma pigmentosum group B), XPC (Xeroderma pigmentosum group C) and XPF (Xeroderma pigmentosum group F) were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis.

Results

An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001) even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316–48.645; P = 0.022), male (OR = 9.333; 95% CI: 1.593–54.672; P = 0.019), and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048–6.510; P = 0.035) had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05) and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037) decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536–43.225; P<0.001) were associated with a high risk of CBP.

Conclusions

The findings showed that the rs25487 and rs1799782 polymorphisms of XRCC1 may contribute to an individual’s susceptibility to CBP and may be used as valid biomarkers. Overall, the genes on chromosome 19q13.2–3 may have a special significance in the development of CBP in occupationally exposed Chinese populations.  相似文献   

20.
1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non-sprayers had significantly increased comet tail moments, and sprayers had significantly increased comet tail moment dispersion coefficients. A multivariate analysis included combining the data sets from both facilities, log transformation of 1-BP exposure indices, and the use of multiple linear regression models for each combination of DNA damage and exposure indices including exposure quartiles. The covariates were gender, age, smoking status, facility, and glutathione S-transferase M1 and T1 (GSTM1, GSTT1) polymorphisms. In the regression models, start-of-week comet tail moment in leukocytes was significantly associated with serum Br quartiles. End-of-week comet tail moment was significantly associated with 1-BP TWA quartiles, and serum Br quartiles. Gender, facility, and GSTM1 had a significant effect in one or more models. Additional associations were not identified from assessment of dispersion coefficients. In vitro and in vivo results provide limited evidence that 1-BP exposure may pose a small risk for increasing DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号